Abstract
Being able to access a patient’s clinical data in due time is critical to any medical setting. Clinical data is very diverse both in content and in terms of which system produces it. The Electronic Health Record (EHR) aggregates a patient’s clinical data and makes it available across different systems. Considering that user’s resistance is a critical factor in system implementation failure, the understanding of user behavior remains a relevant object of investigation. The purpose of this paper is to outline how we can assess the technology acceptance of an EHR using the Technology Acceptance Model 3 (TAM3) and the Delphi methodology. An assessment model is proposed in which findings are based on the results of a questionnaire answered by health professionals whose activities are supported by the EHR technology. In the case study simulated in this paper, the results obtained showed an average of 3 points and modes of 4 and 5, which translates to a good level of acceptance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bennett, D., Bion, J.: ABC of intensive care: organisation of intensive care. BMJ 318(7196), 1468–1470 (1999). https://doi.org/10.1136/bmj.318.7196.1468
Bolboaca, S.-D., Jäntschi, L.: Pearson versus Spearman, Kendall’s tau correlation analysis on structure-activity relationships of biologic active compounds. Leonardo J. Sci. 5(9), 179–200 (2006)
Braga, A., Portela, F., Santos, M.F., Machado, J., Abelha, A., Silva, Á., Rua, F.: Step towards a patient timeline in intensive care units. Procedia Comput. Sci. 64, 618–625 (2015). https://doi.org/10.1016/j.procs.2015.08.575
Chaudhry, B., Wang, J., Wu, S., Maglione, M., Mojica, W., Roth, E., Shekelle, P.G.: Systematic review impact of health information technology on quality, efficiency, and costs of medical care. Ann. Intern. Med. 144(10), 742–752 (2006)
Davis, F.D.: A technology acceptance model for empirically testing new end-user information systems: Theory and results. Management, Ph.D. (April), 291 (1986)
Johns, R.: Survey question bank: methods fact sheet 1 -likert items and scales. Univ. Strathclyde 1(March), 1–11 (2010). https://doi.org/10.1108/eb027216
Marinho, R., Machado, J., Abelha, A.: Processo Clínico Electrónico Visual. In: INForum 2010 : Actas Do II Simposio de Informatica, May 2014, pp. 767–778 (2010)
Novo, A., Duarte, J., Portela, F., Abelha, A., Santos, M.F., Machado, J.: Information systems assessment in pathologic anatomy service. Adv. Intell. Syst. Comput. 354, 199–209 (2015). https://doi.org/10.1007/978-3-319-16528-8_19
Paiva, J., Fernandes, A., Granja, C., Esteves, F., Ribeiro, J., Nóbrega, J., Coutinho, P.: Rede de referenciação de medicina intensiva. Redes de Referenciação Hospitalar, 1–87 (2016). https://bit.ly/2UqG7SY
Portela, F., Aguiar, J., Santos, M.F., Abelha, A., Machado, J., Rua, F.: Assessment of technology acceptance in Intensive Care Units. Adv. Intell. Syst. Comput. 279–292 (2013). https://doi.org/10.4018/ijssoe.2014070102
Santos, L.D.D., Amaral, L.: Estudos Delphi com Q-Sort sobre a web – A sua utilização em Sistemas de Informação. In: Associação Portuguesa de Sistemas de Informação, December, vol. 13 (2004)
Silva, P.M.D.: Modelo De Aceitação De Tecnologia (Tam) Aplicado Ao Sistema De Informação Da Biblioteca Virtual Em Saúde (Bvs) Nas Escolas De Medicina Da Região Metropolitana Do Recife (2008)
Surendran, P.: Technology acceptance model: a survey of literature. Int. J. Bus. Soc. Res. 2(4), 175–178 (2012)
Tan, J.: E-health Care Information Systems: An Introduction for Students and Professionals. Wiley, Hoboken (2005)
Venkatesh, V.: Determinants of perceived ease of use: integrating control, intrinsic motivation, and emotion into the technology acceptance model. Inf. Syst. Res. 11(4), 342–365 (2000). https://doi.org/10.1287/isre.11.4.342.11872
Venkatesh, V., Bala, H.: Technology acceptance model 3 and a research agenda on interventions subject areas: design characteristics, interventions, management support, organizational support, peer support, technology acceptance model (TAM), technology adoption, training, User A. Decis. Sci. 39(2), 273–315 (2008)
Venkatesh, V., Davis, F.D.: A theoretical extension of the technology acceptance model: four longitudinal field studies. Manag. Sci. 46, 186–204 (2000)
Zackiewicz, M., Salles-Filho, S.: Technological Foresight – Um instrumento para política científica e tecnológica. Parcerias Estratégicas 6(10), 144–161 (2010)
Acknowledges
The work has been supported by FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2019.The work has been supported by FCT – Fundação para a Ciência e Tecnologia within the Project Scope DSAIPA/DS/0084/2018.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Fernandes, C., Portela, F., Santos, M.F., Machado, J., Abelha, A. (2020). How to Assess the Acceptance of an Electronic Health Record System?. In: Rocha, Á., Adeli, H., Reis, L., Costanzo, S., Orovic, I., Moreira, F. (eds) Trends and Innovations in Information Systems and Technologies. WorldCIST 2020. Advances in Intelligent Systems and Computing, vol 1161. Springer, Cham. https://doi.org/10.1007/978-3-030-45697-9_45
Download citation
DOI: https://doi.org/10.1007/978-3-030-45697-9_45
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-45696-2
Online ISBN: 978-3-030-45697-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)