Resilient SDN, CDN and ICN Technology and Solutions | SpringerLink
Skip to main content

Resilient SDN, CDN and ICN Technology and Solutions

  • Chapter
  • First Online:
Guide to Disaster-Resilient Communication Networks

Abstract

Disaster-based resilience issues can severely interrupt communication in networks, making their functions unavailable. Such interruptions may include hardware-/software- related failures or malicious attacks. Especially, the latter is becoming more and more visible with higher intensity and more massive scale. In order to prevent it, new technology concepts and new mitigation strategies are needed. In this chapter, we present the most common cyber-attacks that affect networks based on the concepts of the software defined network (SDN), the content delivery network (CDN) and the information-centric network (ICN). We then indicate solutions to these problems. Finally, we discuss the future opportunities of how the communication networks can be updated to decrease the topological vulnerability to attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alsmadi I, Xu D (2015) Security of software defined networks: a survey. Comput Secur 53:79–108

    Google Scholar 

  2. Aad I, Braun T, Mansour D (2016) Authentication and trust in service-centric networking. In: 2016 IEEE 41st Conference on Local Computer Networks (LCN), pp 563–566

    Google Scholar 

  3. Abdou A, van Oorschot PC, Wan T (2018) Comparative analysis of control plane security of SDN and conventional networks. IEEE Commun Surv Tutor 20(4):3542–3559

    Article  Google Scholar 

  4. Ahlgren B, Dannewitz C, Imbrenda C, Kutscher D, Ohlman B (2012) A survey of information-centric networking. IEEE Commun Mag 50(7):26–36

    Article  Google Scholar 

  5. Ahmad I, Namal S, Ylianttila M, Gurtov AV (2015) Security in software defined networks: a survey. IEEE Commun Surv Tutor 17:2317–2346

    Article  Google Scholar 

  6. Aibin M (2017) Dynamic routing algorithms for cloud-ready elastic optical networks. PhD thesis, Wroclaw University of Science and Technology

    Google Scholar 

  7. Aibin M, Walkowiak K, Sen A (2017) Software-defined adaptive survivability for elastic optical networks. Opt Switch Netw 23:85–96

    Article  Google Scholar 

  8. Akhunzada A, Ahmed E, Gani A, Khan MK, Imran M, Guizani S (2015) Securing software defined networks: taxonomy, requirements, and open issues. IEEE Commun Mag 53(4):36–44

    Article  Google Scholar 

  9. Awerbuch B, Curtmola R, Holmer D, Nita-Rotaru C, Rubens H (2008) ODSBR: an on-demand secure byzantine resilient routing protocol for wireless ad hoc networks. ACM Trans Inf Syst Secur 10(4):1–35

    Article  Google Scholar 

  10. Balu K, Pardal ML, Correia M (2016) DARSHANA: detecting route hijacking for communication confidentiality. In: 2016 IEEE 15th International Symposium on Network Computing and Applications (NCA). IEEE, pp 52–59

    Google Scholar 

  11. Beheshti N, Zhang Y (2012) Fast failover for control traffic in software-defined networks. In: GLOBECOM—IEEE Global Telecommunications Conference, pp 2665–2670

    Google Scholar 

  12. Braun T, Hilt V, Hofmann M, Rimac I, Steiner M, Varvello M (2011) Service-centric networking. In: 2011 IEEE International Conference on Communications Workshops (ICC), pp 1–6

    Google Scholar 

  13. Brownlee N, Claffy KC, Nemeth E (2001) DNS measurements at a root server. In: Global Telecommunications Conference, 2001. GLOBECOM’01, vol 3. IEEE, pp 1672–1676

    Google Scholar 

  14. Cheng Y, Rahman MM, Gangadhar S, Alenazi MJ, Sterbenz JP (2015) Cross-layer framework with geodiverse routing in software-defined networking. In: 2015 11th International Conference on Network and Service Management (CNSM). IEEE, pp 348–353

    Google Scholar 

  15. Dargahi T, Caponi A, Ambrosin M, Bianchi G, Conti M (2017) A survey on the security of stateful SDN data planes. IEEE Commun Surv Tutor 19(3):1701–1725

    Article  Google Scholar 

  16. Ebert C, Gallardo G, Hernantes J, Serrano N (2016) DevOps. IEEE Software

    Google Scholar 

  17. Fok MP, Wang Z, Deng Y, Prucnal PR (2011) Optical layer security in fiber-optic networks. IEEE Trans Inf Forens Secur 6(3 Part 1):725–736

    Google Scholar 

  18. Frank B, Poese I, Lin Y, Smaragdakis G, Feldmann A, Maggs B, Rake J, Uhlig S, Weber R (2013) Pushing CDN-ISP collaboration to the limit. ACM SIGCOMM Comput Commun Rev 43(3):34

    Article  Google Scholar 

  19. Fraser B, Lake D, Systems C, Finnegan J, Viljoen N, Etworking SOEN (2013) Are we ready for SDN? Implementation challenges for software-defined networks. IEEE Commun Mag 51(7):36–43

    Article  Google Scholar 

  20. Furdek M, Wosinska L, Goscien R, Manousakis K, Aibin M, Walkowiak K, Ristov S, Gushev M, Marzo J (2016) An overview of security challenges in communication networks. In: 8th International Workshop on Resilient Networks Design and Modeling. Halmstad, Sweden, pp 43–50

    Google Scholar 

  21. Gasparyan M, Corsini G, Braun T, Schiller E, Saltarin J (2017) Session support for SCN. In: 2017 IFIP Networking Conference (IFIP Networking) and Workshops, pp 1–6

    Google Scholar 

  22. Gasparyan M, Marandi A, Schiller E, Braun T (2019) Fault-tolerant session support for service-centric networking. In: 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), pp 312–320

    Google Scholar 

  23. Haeri S, Thong WWK, Chen G, Trajkovic L (2013) A reinforcement learning-based algorithm for deflection routing in optical burst-switched networks. In: 14th International Conference on Information Reuse and Integration. IEEE IRI, pp 474–481

    Google Scholar 

  24. Helfert F, Niedermayer H, Carle G (2018) Evaluation of algorithms for multipath route selection over the Internet. In: 14th International Workshop on Design of Reliable Communication Networks (DRCN), pp 1–8

    Google Scholar 

  25. Hoque AKMM, Amin SO, Alyyan A, Zhang B, Zhang L, Wang L (2013) NLSR: named-data link state routing protocol. In: Proceedings of the 3rd ACM SIGCOMM Workshop on Information-Centric Networking, ICN’13, pp 15–20

    Google Scholar 

  26. Hunter P (2008) Pakistan YouTube block exposes fundamental internet security weakness: concern that Pakistani action affected Youtube access elsewhere in world. Comput Fraud Secur 2008(4):10–11

    Article  Google Scholar 

  27. Huy AN, Tam VN, Dong IK, Choi D (2008) Network traffic anomalies detection and identification with flow monitoring. In: 5th IEEE and IFIP International Conference on Wireless and Optical Communications Networks, WOCN 2008, pp 1–5

    Google Scholar 

  28. Jain R (2014) OpenFlow, software defined networking (SDN) and network function virtualization (NFV). In: IEEE International Conference on Communications (ICC), pp 1–102

    Google Scholar 

  29. Kaczmarski K, Pilarski M, Banasiak B, Kabut C (2013) Content delivery network monitoring with limited resources. In: 2013 Federated Conference on Computer Science and Information Systems, FedCSIS 2013

    Google Scholar 

  30. Khan SU, Maciejewski AA, Siegel HJ (2009) Robust CDN replica placement techniques. In: IPDPS 2009—Proceedings of the 2009 IEEE International Parallel and Distributed Processing Symposium, pp 1–8

    Google Scholar 

  31. Kim MS, Kong HJ, Hong SC, Chung SH, Hong J (2004) A flow-based method for abnormal network traffic detection. In: 2004 IEEE/IFIP Network Operations and Management Symposium (IEEE Cat. No. 04CH37507), vol 1, pp 1–14

    Google Scholar 

  32. Kreutz D, Ramos FMV, Veríssimo PE, Rothenberg CE, Azodolmolky S, Uhlig S (2015) Software-defined networking: a comprehensive survey. Proc IEEE 103(1):14–76

    Article  Google Scholar 

  33. Lakhina A, Crovella M, Diot C (2004) Characterization of network-wide anomalies in traffic flows. In: Proceedings of the 4th ACM SIGCOMM Conference on Internet Measurement—IMC ’04, p 201

    Google Scholar 

  34. Lau F, Rubin SHS, Stuart H, Smith MH, Trajkovic L (2000) Distributed denial of service attacks. In: 2000 IEEE International Conference on Systems, Man, and Cybernetics, pp 2275–2280

    Google Scholar 

  35. Li H, Li P, Guo S, Nayak A (2014) Byzantine-resilient secure software-defined networks with multiple controllers in cloud. IEEE Trans Cloud Comput 2(4):436–447

    Article  Google Scholar 

  36. Li W, Meng W, Kwok LF (2016) A survey on OpenFlow-based software defined networks: security challenges and countermeasures. J Netw Comput Appl 68:126–139

    Google Scholar 

  37. Li Y, Xing HJ, Hua Q, Wang XZ, Batta P, Haeri S, Trajkovic L (2014) Classification of BGP anomalies using decision trees and fuzzy rough sets. In: 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp 1312–1317

    Google Scholar 

  38. Mahoney MV (2003) Network traffic anomaly detection based on packet bytes. In: Proceedings of the 2003 ACM Symposium on Applied Computing—SAC ’03, p 346

    Google Scholar 

  39. Mehdi SA, Khalid J, Khayam SA (2011) Revisiting traffic anomaly detection using software defined networking. In: Recent Advances in Intrusion Detection. Springer, Berlin, Heidelberg

    Google Scholar 

  40. Münz G, Li S, Carle G (2007) Traffic anomaly detection using k-means clustering. In: GI/ITG Workshop MMBnet

    Google Scholar 

  41. Nychis G, Sekar V, Andersen DG, Kim H, Zhang H (2008) An empirical evaluation of entropy-based traffic anomaly detection. In: Proceedings of the 8th ACM SIGCOMM Conference on Internet Measurement Conference—IMC ’08

    Google Scholar 

  42. Obadia M, Bouet M, Leguay J, Phemius K, Iannone L (2014) Failover mechanisms for distributed SDN controllers. In: 2014 International Conference on the Network of the Future, NOF 2014—Workshop on Smart Cloud Networks and Systems, SCNS 2014

    Google Scholar 

  43. Pashkov V, Shalimov A, Smeliansky R (2014) Controller failover for SDN enterprise networks. In: SDN and NFV: Next Generation of Computational Infrastructure—2014 International Science and Technology Conference—Modern Networking Technologies, MoNeTec 2014, Proceedings

    Google Scholar 

  44. Qiu L, Padmanabhan VN, Voelker GM (2001) On the placement of web server replicas. In: Proceedings—IEEE INFOCOM, vol 3, pp 1587–1596

    Google Scholar 

  45. Raposo D, Pardal ML, Rodrigues L, Correia M (2016) Machete: multi-path communication for security. In: 2016 IEEE 15th International Symposium on Network Computing and Applications (NCA). IEEE, pp 60–67

    Google Scholar 

  46. Rodrigues M, Moreira A, Neves M, Azevêdo E, Sadok D, Callado A, Souza V (2013) Flow count: a CDN dynamic replica placement algorithm for cross traffic optimization. In: 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM 2013), p 4

    Google Scholar 

  47. Rohrer JP, Naidu R, Sterbenz JPG (2009) Multipath at the transport layer: an end-to-end resilience mechanism. In: 2009 International Conference on Ultra Modern Telecommunications Workshops, pp 1–7

    Google Scholar 

  48. Santos J (2016) On the impact of deploying federated SDN controllers in optical transport networks. In: 18th International Conference on Transparent Optical Networks (ICTON), Trento, Italy, pp 5–7

    Google Scholar 

  49. Scott-Hayward S, Natarajan S, Sezer S (2016) A survey of security in software defined networks. IEEE Commun Surv Tutor 18:623–654

    Article  Google Scholar 

  50. Sourlas V, Ascigil O, Psaras I, Pavlou G (2018) Enhancing information resilience in disruptive information-centric networks. IEEE Trans Netw Serv Manag 15(2):746–760

    Article  Google Scholar 

  51. Sourlas V, Tassiulas L, Psaras I, Pavlou G (2015) Information resilience through user-assisted caching in disruptive content-centric networks. In: 2015 IFIP Networking Conference (IFIP Networking), pp 1–9

    Google Scholar 

  52. Suurballe JW (1974) Disjoint paths in a network. Networks 4(2):125–145

    Article  MathSciNet  Google Scholar 

  53. Thing VL, Sloman M, Dulay N (2009) Locating network domain entry and exit point/path for DDoS attack traffic. IEEE Trans Netw Serv Manag 6(3):163–174

    Article  Google Scholar 

  54. Wang H, Gong Z, Guan Q, Wang B (2008) Detection network anomalies based on packet and flow analysis. In: Proceedings—7th International Conference on Networking, ICN 2008, pp 497–502

    Google Scholar 

  55. Wang L, Lehman V, Mahmudul Hoque AKM, Zhang B, Yu Y, Zhang L (2018) A secure link state routing protocol for NDN. IEEE Access 6:10470–10482

    Google Scholar 

  56. Wang Z, Jiang H, Sun Y, Li J, Liu J, Dutkiewicz E (2010) A k-coordinated decentralized replica placement algorithm for the ring-based CDN-P2P architecture. In: Proceedings—IEEE Symposium on Computers and Communications, pp 811–816

    Google Scholar 

  57. Zhang L, Afanasyev A, Burke J, Jacobson V, Claffy K, Crowley P, Papadopoulos C, Wang L, Zhang B (2014) Named data networking. SIGCOMM Comput Commun Rev 44(3):66–73

    Article  Google Scholar 

Download references

Acknowledgements

This chapter is based on work from COST Action CA15127 (“Resilient communication services protecting end-user applications from disaster-based failures—RECODIS”) supported by COST (European Cooperation in Science and Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Aibin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aibin, M., Kantor, M., Boryło, P., Niedermayer, H., Chołda, P., Braun, T. (2020). Resilient SDN, CDN and ICN Technology and Solutions. In: Rak, J., Hutchison, D. (eds) Guide to Disaster-Resilient Communication Networks. Computer Communications and Networks. Springer, Cham. https://doi.org/10.1007/978-3-030-44685-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44685-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44684-0

  • Online ISBN: 978-3-030-44685-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics