Randomized Decoding of Gabidulin Codes Beyond the Unique Decoding Radius | SpringerLink
Skip to main content

Randomized Decoding of Gabidulin Codes Beyond the Unique Decoding Radius

  • Conference paper
  • First Online:
Post-Quantum Cryptography (PQCrypto 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12100))

Included in the following conference series:

Abstract

We address the problem of decoding Gabidulin codes beyond their unique error-correction radius. The complexity of this problem is of importance to assess the security of some rank-metric code-based cryptosystems. We propose an approach that introduces row or column erasures to decrease the rank of the error in order to use any proper polynomial-time Gabidulin code error-erasure decoding algorithm. The expected work factor of this new randomized decoding approach is a polynomial term times \(q^{m(n-k)-w(n+m)+w^2+\min \{2\xi (\frac{n+k}{2}-\xi ),wk\} }\), where n is the code length, q the size of the base field, m the extension degree of the field, k the code dimension, w the number of errors, and \(\xi := w-\tfrac{n-k}{2}\). It improves upon generic rank-metric decoders by an exponential factor.

The work of J. Renner and A. Wachter-Zeh was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 801434).

Sven Puchinger has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement no. 713683 (COFUNDfellowsDTU).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aguilar Melchor, C., et al.: Rank quasi cyclic (RQC). Second round submission to the NIST post-quantum cryptography call (2019). https://pqc-rqc.org

  2. Aragon, N., Gaborit, P., Hauteville, A., Tillich, J.: A new algorithm for solving the rank syndrome decoding problem. In: IEEE International Symposium on Information Theory (ISIT), pp. 2421–2425, June 2018. https://doi.org/10.1109/ISIT.2018.8437464

  3. Augot, D., Finiasz, M.: A public key encryption scheme based on the polynomial reconstruction problem. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 229–240. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_14

    Chapter  Google Scholar 

  4. Bardet, M., et al.: An algebraic attack on rank metric code-based cryptosystems. Technical report (2019). arXiv:1910.00810v1

  5. Ben-Sasson, E., Kopparty, S., Radhakrishnan, J.: Subspace polynomials and limits to list decoding of Reed-Solomon codes. IEEE Trans. Inf. Theory 56(1), 113–120 (2010). https://doi.org/10.1109/TIT.2009.2034780

    Article  MathSciNet  MATH  Google Scholar 

  6. Berlekamp, E., McEliece, R.J., van Tilborg, H.: On the inherent intractability of certain coding problems. IEEE Trans. Inf. Theory 24(3), 384–386 (1978)

    Article  MathSciNet  Google Scholar 

  7. Delsarte, P.: Bilinear forms over a finite field with applications to coding theory. J. Comb. Theory Ser. A 25(3), 226–241 (1978)

    Article  MathSciNet  Google Scholar 

  8. Etzion, T., Vardy, A.: Error-correcting codes in projective space. IEEE Trans. Inf. Theory 57(2), 1165–1173 (2011)

    Article  MathSciNet  Google Scholar 

  9. Faure, C., Loidreau, P.: A new public-key cryptosystem based on the problem of reconstructing p–polynomials. In: Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 304–315. Springer, Heidelberg (2006). https://doi.org/10.1007/11779360_24

    Chapter  Google Scholar 

  10. Gabidulin, E.M.: Theory of codes with maximum rank distance. Probl. Inf. Transm. 21(1), 3–16 (1985)

    MathSciNet  MATH  Google Scholar 

  11. Gabidulin, E.M., Paramonov, A.V., Tretjakov, O.V.: Rank errors and rank erasures correction. In: 4th International Colloquium on Coding Theory (1991)

    Google Scholar 

  12. Gabidulin, E.M., Pilipchuk, N.I.: Error and erasure correcting algorithms for rank codes. Des. Codes Cryptogr. 49(1–3), 105–122 (2008)

    Article  MathSciNet  Google Scholar 

  13. Gaborit, P., Otmani, A., Talé Kalachi, H.: Polynomial-time key recovery attack on the Faure-Loidreau scheme based on Gabidulin codes. Des. Codes Cryptogr. 86, 1391–1403 (2018)

    Article  MathSciNet  Google Scholar 

  14. Gaborit, P., Ruatta, O., Schrek, J.: On the complexity of the rank syndrome decoding problem. IEEE Trans. Inf. Theory 62(2), 1006–1019 (2016). https://doi.org/10.1109/TIT.2015.2511786

    Article  MathSciNet  MATH  Google Scholar 

  15. Gaborit, P., Zémor, G.: On the hardness of the decoding and the minimum distance problems for rank codes. IEEE Trans. Inf. Theory 62(12), 7245–7252 (2015)

    Article  MathSciNet  Google Scholar 

  16. Guruswami, V., Sudan, M.: Improved decoding of Reed-Solomon and algebraic-geometry codes. IEEE Trans. Inf. Theory 45(6), 1757–1767 (1999)

    Article  MathSciNet  Google Scholar 

  17. Guruswami, V., Vardy, A.: Maximum-likelihood decoding of Reed-Solomon codes is NP-hard. IEEE Trans. Inf. Theory 51, 2249–2256 (2005)

    Article  MathSciNet  Google Scholar 

  18. Horlemann-Trautmann, A.L., Kuijper, M.: A module minimization approach to Gabidulin decoding via interpolation. J. Algebra Comb. Discrete Struct. Appl. 5(1), 29–43 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Jerkovits, T., Bartz, H.: Weak keys in the Faure-Loidreau cryptosystem. In: Baldi, M., Persichetti, E., Santini, P. (eds.) CBC 2019. LNCS, vol. 11666, pp. 102–114. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25922-8_6

    Chapter  Google Scholar 

  20. Koetter, R., Kschischang, F.R.: Coding for errors and erasures in random network coding. IEEE Trans. Inf. Theory 54(8), 3579–3591 (2008)

    Article  MathSciNet  Google Scholar 

  21. Lavauzelle, J., Loidreau, P., Pham, B.D.: Ramesses, a rank metric encryption scheme with short keys. preprint (2019). https://arxiv.org/abs/1911.13119

  22. Raviv, N., Wachter-Zeh, A.: Some Gabidulin codes cannot be list decoded efficiently at any radius. IEEE Trans. Inf. Theory 62(4), 1605–1615 (2016)

    Article  MathSciNet  Google Scholar 

  23. Richter, G., Plass, S.: Error and erasure decoding of rank-codes with a modified Berlekamp-Massey algorithm. In: International ITG Conference on Systems, Communications and Coding 2004 (SCC) (2004)

    Google Scholar 

  24. Roth, R.M.: Maximum-rank array codes and their application to crisscross error correction. IEEE Trans. Inf. Theory 37(2), 328–336 (1991)

    Article  MathSciNet  Google Scholar 

  25. Silva, D.: Error control for network coding. Ph.D. thesis (2009)

    Google Scholar 

  26. Silva, D., Kschischang, F.R., Koetter, R.: A rank-metric approach to error control in random network coding. IEEE Trans. Inf. Theory 54(9), 3951–3967 (2008)

    Article  MathSciNet  Google Scholar 

  27. Stern, J.: Approximating the number of error locations within a constant ratio is NP-complete. In: Cohen, G., Mora, T., Moreno, O. (eds.) AAECC 1993. LNCS, vol. 673, pp. 325–331. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56686-4_54

    Chapter  Google Scholar 

  28. Trombetti, R., Zullo, F.: On the list decodability of Rank Metric codes. preprint (2019). https://arxiv.org/abs/1907.01289

  29. Vardy, A.: The intractability of computing the minimum distance of a code. IEEE Trans. Inf. Theory 43(6), 1757–1766 (1997)

    Article  MathSciNet  Google Scholar 

  30. Wachter, A., Sidorenko, V., Bossert, M.: A basis for all solutions of the key equation for Gabidulin codes. In: IEEE International Symposium on Information Theory (ISIT), pp. 1143–1147, June 2010. https://doi.org/10.1109/ISIT.2010.5513681

  31. Wachter-Zeh, A.: Bounds on list decoding of rank-metric codes. IEEE Trans. Inf. Theory 59(11), 7268–7277 (2013)

    Article  MathSciNet  Google Scholar 

  32. Wachter-Zeh, A.: Decoding of block and convolutional codes in rank metric. Ph.D. thesis, Ulm University and Université Rennes 1 (2013)

    Google Scholar 

  33. Wachter-Zeh, A., Puchinger, S., Renner, J.: Repairing the Faure-Loidreau public-key cryptosystem. In: IEEE International Symposium on Information Theory (ISIT) (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Renner .

Editor information

Editors and Affiliations

Appendices

A Proof of Lemma 1

The number of q-vector spaces of dimension v, which intersections with \(\mathcal {U}\) have dimension at least \(\omega \), is equal to

$$\begin{aligned} \sum _{i=\omega }^{\min \{u,v\}}\left[ \begin{matrix} \ell -u \\ v-i \end{matrix} \right] _{q} \left[ \begin{matrix} u \\ i \end{matrix} \right] _{q}q^{(u-i)(v-i)} = \sum _{j=\max \{0,v-u\}}^{v-\omega }\left[ \begin{matrix} \ell -u \\ j \end{matrix} \right] _{q} \left[ \begin{matrix} u \\ v-j \end{matrix} \right] _{q}q^{j(u-v+j)}, \end{aligned}$$

see [8]. Since the total number of v-dimensional subspaces of a \(\ell \)-dimensional space is equal to \(\left[ \begin{matrix} \ell \\ v \end{matrix} \right] _{q}\), the probability

$$\begin{aligned} \mathrm {Pr}[\dim (\mathcal {U}\cap \mathcal {V}) \ge \omega ]&=\frac{ \sum _{i=\omega }^{\min \{u,v\}} \left[ \begin{matrix} \ell -u \\ v-i \end{matrix} \right] _{q} \left[ \begin{matrix} u \\ i \end{matrix} \right] _{q} q^{(u-i)(v-i)} }{\left[ \begin{matrix} \ell \\ v \end{matrix} \right] _{q}} \\&= \frac{\sum _{j=\max \{0,v-u\}}^{v-\omega }\left[ \begin{matrix} \ell -u \\ j \end{matrix} \right] _{q} \left[ \begin{matrix} u \\ v-j \end{matrix} \right] _{q}q^{j(u-v+j)}}{\left[ \begin{matrix} \ell \\ v \end{matrix} \right] _{q}}. \end{aligned}$$

Using the upper bound on the Gaussian coefficient derived in [20, Lemma 4], it follows that

$$\begin{aligned} \mathrm {Pr}[\dim (\mathcal {U}\cap \mathcal {V}) \ge \omega ]&\le 16\sum _{j=\max \{0,v-u\}}^{v-\omega } q^{j(\ell -u-j)+v(u-v+j)-v(\ell -v)}\\&=16\sum _{j=\max \{0,v-u\}}^{v-\omega } q^{(j-v)(\ell -u-j)}\\&\le 16 ~(\min \{u,v\}+1-\omega ) q^{(j^{*}-v)(\ell -u-j^{*})}, \end{aligned}$$

where \(j^{*}:= \min \{ v-\omega , \frac{1}{2}(\ell +v-u) \}\). The latter inequality follows from the fact that the term \((j-v)(\ell -u-j)\) is a concave function in j and is maximum for \(j = \frac{1}{2}(\ell +v-u)\).   \(\square \)

B Guessing Jointly the Column and Row Space of the Error

We analyze the success probability of decoding to a specific codeword (i.e., the analog of Lemma 2) for guessing jointly the row and the column space of the error.

Lemma 4

Let \(\varvec{r}\in \mathbb {F}_{q^m}^n\) be defined as in Sect. 2.2, where neither parts of the error row space nor column space are known, i.e., \(\gamma =\rho =0\) and \(t = w\). The probability that an error-erasure decoder using a random

  • \(\delta _r\)-dimensional guess of the error row space and a

  • \(\delta _c\)-dimensional guess of the error column space,

where \(\delta _r+\delta _c =: \delta \in [2\xi ,n-k]\), outputs \(\varvec{m}\varvec{G}_\mathrm {Gab}\) is upper-bounded by

$$\begin{aligned} \frac{\displaystyle \sum _{i=\lceil \xi + \frac{\delta }{2}\rceil }^{\displaystyle \min \{\delta ,w\}} \sum _{\begin{array}{c} 0 \le w_r,w_c \le i \\ w_r+w_c=i \end{array}} \left[ \begin{matrix} n-w \\ \delta _r-w_r \end{matrix} \right] _{q} \left[ \begin{matrix} w \\ w_r \end{matrix} \right] _{q}q^{(w-w_r)(\delta _r-w_r)} \left[ \begin{matrix} m-w \\ \delta _c-w_c \end{matrix} \right] _{q} \left[ \begin{matrix} w \\ w_c \end{matrix} \right] _{q}q^{(w-w_c)(\delta _c-w_c)}}{\left[ \begin{matrix} n \\ \delta _r \end{matrix} \right] _{q}\left[ \begin{matrix} m \\ \delta _c \end{matrix} \right] _{q}}. \end{aligned}$$

Proof

The statement follows by the same arguments as Lemma 2, where we computed the probability that the row space of a random vector space of dimension \(\delta \) intersects with the w-dimensional row space of the error in i dimensions (where i must be sufficiently large to apply the error erasure decoder successfully). Here, we want that a random guess of \(\delta _r\)- and \(\delta _c\)-dimensional vector spaces intersect with the row and column space of the error in exactly \(w_r\) and \(w_c\) dimensions, respectively. We sum up over all choices of \(w_r\) and \(w_c\) that sum up to an i that is sufficiently large to successfully apply the error erasure decoder. This is an optimistic argument since guessing correctly \(w_r\) dimensions of the row and \(w_c\) dimensions of the column space of the error might not reduce the rank of the error by \(w_r+w_c\). However, this gives an upper bound on the success probability.    \(\square \)

Example 1 shows that guessing row and column space jointly is not advantageous for some specific parameters.

Example 1

Consider the example \(q=2\), \(m=n=24\), \(k=16\), \(w=6\). Guessing only the row space of the error with \(\delta = 4\) succeeds with probability \(1.66 \cdot 10^{-22}\) and joint guessing with \(\delta _r = \delta _c = 2\) succeeds with probability \(1.93 \cdot 10^{-22}\). Hence, it is advantageous to guess only the row space (or due to \(m=n\) only the column space). For a larger example with \(m=n=64\), \(k=16\), and \(w=19\), the two probabilities are almost the same, \(\approx 5.27 \cdot 10^{-82}\) (for \(\delta =32\) and \(\delta _r=\delta _c=16\)).

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Renner, J., Jerkovits, T., Bartz, H., Puchinger, S., Loidreau, P., Wachter-Zeh, A. (2020). Randomized Decoding of Gabidulin Codes Beyond the Unique Decoding Radius. In: Ding, J., Tillich, JP. (eds) Post-Quantum Cryptography. PQCrypto 2020. Lecture Notes in Computer Science(), vol 12100. Springer, Cham. https://doi.org/10.1007/978-3-030-44223-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44223-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44222-4

  • Online ISBN: 978-3-030-44223-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics