High-Accuracy Preintegration for Visual-Inertial Navigation | SpringerLink
Skip to main content

High-Accuracy Preintegration for Visual-Inertial Navigation

  • Chapter
  • First Online:
Algorithmic Foundations of Robotics XII

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 13))

  • 1684 Accesses

Abstract

Visual-inertial navigation that is able to provide accurate 3D localization in GPS-denied environments has seen popularity in recent years due to the proliferation of cost-effective cameras and inertial measurement units (IMUs). While an extended Kalman filter (EKF) is often used for sensor fusion, factor graph-based optimization has recently revealed its superior performance, which, however, is still compromised by the lack of rigorous IMU preintegration (i.e., integrating IMU measurements in a local frame of reference). To address this issue, in this paper, we analytically derive preintegration based on closed-form solutions of the continuous IMU measurement equations. These expressions allow us to analytically compute the mean, covariance, and bias Jacobians for a set of IMU preintegration factors. These accurate factors are subsequently fused with the visual information via visual-inertial factor graph optimization to provide high-precision trajectory estimates. The proposed method is validated on both Monte Carlo simulations and real-world experiments.

Guoquan Huang: This work was partially supported by the University of Delaware College of Engineering, UD Cybersecurity Initiative, the Delaware NASA/EPSCoR Seed Grant, the NSF (IIS-1566129), and the DTRA (HDTRA1-16-1-0039).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hesch, J., Kottas, D., Bowman, S., Roumeliotis, S.: Camera-IMU-based localization: Observability analysis and consistency improvement. International Journal of Robotics Research 33 (2014) 182–201

    Google Scholar 

  2. Li, M., Mourikis, A.: High-precision, consistent EKF-based visual-inertial odometry. International Journal of Robotics Research 32(6) (2013) 690–711

    Google Scholar 

  3. Huang, G., Kaess, M., Leonard, J.: Towards consistent visual-inertial navigation. In: Proc. of the IEEE International Conference on Robotics and Automation, Hong Kong, China (May 31–June 7, 2014) 4926–4933

    Google Scholar 

  4. Kumar, V., Michael, N.: Opportunities and challenges with autonomous micro aerial vehicles. International Journal of Robotics Research 31(11) (September 2012) 1279–1291

    Google Scholar 

  5. Dellaert, F., Kaess, M.: Square root SAM: Simultaneous localization and mapping via square root information smoothing. International Journal of Robotics Research 25(12) (Dec. 2006) 1181–1203

    Google Scholar 

  6. Lupton, T., Sukkarieh, S.: Visual-inertial-aided navigation for high-dynamic motion in built environments without initial conditions. IEEE Transactions on Robotics 28(1) (February 2012) 61–76

    Google Scholar 

  7. Forster, C., Carlone, L., Dellaert, F., Scaramuzza, D.: Imu preintegration on manifold for efficient visual-inertial maximum-a-posteriori estimation. In: Robotics: Science and Systems XI. Number EPFL-CONF-214687 (2015)

    Google Scholar 

  8. Ling, Y., Liu, T., Shen, S.: Aggressive quadrotor flight using dense visual-inertial fusion. In: 2016 IEEE International Conference on Robotics and Automation (ICRA). (May 2016) 1499–1506

    Google Scholar 

  9. Mourikis, A.I., Roumeliotis, S.I.: A multi-state constraint Kalman filter for vision-aided inertial navigation. In: Proceedings of the IEEE International Conference on Robotics and Automation, Rome, Italy (April 10–14, 2007) 3565–3572

    Google Scholar 

  10. Roumeliotis, S.I., Burdick, J.W.: Stochastic cloning: A generalized framework for processing relative state measurements. In: Proceedings of the IEEE International Conference on Robotics and Automation, Washington, DC (May 11–15 2002) 1788–1795

    Google Scholar 

  11. Huang, G., Eckenhoff, K., Leonard, J.: Optimal-state-constraint EKF for visual-inertial navigation. In: Proc. of the International Symposium on Robotics Research, Sestri Levante, Italy (September 12–15, 2015)

    Google Scholar 

  12. Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard,W.: g2o: A general framework for graph optimization. In: Proc. of the IEEE International Conference on Robotics and Automation, Shanghai, China (May 9–13, 2011) 3607–3613

    Google Scholar 

  13. Indelman, V.,Williams, S., Kaess,M., Dellaert, F.: Factor graph based incremental smoothing in inertial navigation systems. In: Proc. of the International Conference on Information Fusion, Singapore (July 2012)

    Google Scholar 

  14. Indelman, V.,Melim, A., Dellaert, F.: Incremental light bundle adjustment for robotics navigation. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE (2013) 1952–1959

    Google Scholar 

  15. Trawny, N., Roumeliotis, S.I.: Indirect Kalman filter for 3D attitude estimation. Technical report, University of Minnesota, Dept. of Comp. Sci. & Eng. (March 2005)

    Google Scholar 

  16. Lupton, T., Sukkarieh, S.: Visual-inertial-aided navigation for high-dynamic motion in built environments without initial conditions. IEEE Transactions on Robotics 28(1) (Feb 2012) 61–76

    Google Scholar 

  17. Eckenhoff, K., Geneva, P., Huang, G.: High-accuracy preintegration for visual inertial navigation. Technical Report RPNG-2016-001, University of Delaware (2016) Available: http://udel.edu/~ghuang/papers/tr_hapi.pdf.

  18. Chirikjian, G.S.: Stochastic Models, Information Theory, and Lie Groups, Volume 2: Analytic Methods and Modern Applications. Volume 2. Springer Science & Business Media (2011)

    Google Scholar 

  19. Huang, G.P., Mourikis, A.I., Roumeliotis, S.I.: An observability constrained sliding window filter for SLAM. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA (September 25–30, 2011) 65–72

    Google Scholar 

  20. Huang, G., Kaess, M., Leonard, J.: Consistent sparsification for graph optimization. In: Proc. of the European Conference on Mobile Robots, Barcelona, Spain (September 25–27, 2013) 150–157

    Google Scholar 

  21. Forster, C., Pizzoli, M., Scaramuzza, D.: SVO: Fast semi-direct monocular visual odometry. In: Proc. of the IEEE International Conference on Robotics and Automation, Hong Kong, China (May 2014)

    Google Scholar 

  22. Kummerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g2o: A general framework for graph optimization. In: Proc. of the IEEE International Conference on Robotics and Automation, Shanghai, China (May 9–13, 2011) 3607–3613

    Google Scholar 

  23. Burri, M., Nikolic, J., Gohl, P., Schneider, T., Rehder, J., Omari, S., Achtelik, M.W., Siegwart, R.: The euroc micro aerial vehicle datasets. The International Journal of Robotics Research (2016)

    Google Scholar 

  24. OpenCV Developers Team: Open source computer vision (OpenCV) library. Available: http://opencv.org

    Google Scholar 

  25. Eckenhoff, K., Geneva, P., Huang, G.: Direct visual-inertial navigation with analytical preintegration. In: 2017 IEEE International Conference on Robotics and Automation. (May 2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Eckenhoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eckenhoff, K., Geneva, P., Huang, G. (2020). High-Accuracy Preintegration for Visual-Inertial Navigation. In: Goldberg, K., Abbeel, P., Bekris, K., Miller, L. (eds) Algorithmic Foundations of Robotics XII. Springer Proceedings in Advanced Robotics, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-43089-4_4

Download citation

Publish with us

Policies and ethics