Abstract
This paper presents a brute force approach to fit finite mixtures of distributions considering the empirical probability density and cumulative distribution functions as well as the empirical moments. The fitting problem is solved using a non-negative least squares method determining a mixture from a larger set of distributions.
The approach is experimentally validated for finite mixtures of Erlang distributions. The results show that a feasible number of component distributions, which accurately fit to the empirical data, is obtained within a short CPU time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
\(g(x|\cdot )\) denotes \(g(x|({{\varvec{\pi }}},{{\varvec{\theta }}}))\) for arbitrary parameters \(({{\varvec{\pi }}},{{\varvec{\theta }}})\).
- 2.
\(\pi ,\mathrm {e}\) the transcendental numbers.
References
Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974)
Asmussen, S., Nerman, O., Olsson, M.: Fitting phase-type distributions via the EM algorithm. Scand. J. Stat. 23(4), 419–441 (1996)
Bause, F., Buchholz, P., Kriege, J.: ProFiDo - the processes fitting toolkit Dortmund. In: Proceedings of the 7th International Conference on Quantitative Evaluation of SysTems (QEST 2010), pp. 87–96. IEEE Computer Society (2010)
Bause, F., Horvath, G.: Fitting Markovian arrival processes by incorporating correlation into phase type renewal processes. In: Proceedings of the 2010 Seventh International Conference on the Quantitative Evaluation of Systems, QEST 2010, pp. 97–106. IEEE Computer Society, Washington, DC, USA (2010)
Bobbio, A., Horváth, A., Telek, M.: Matching three moments with minimal acyclic phase type distributions. Stoch. Models 21(2–3), 303–326 (2005)
Bobbio, A., Telek, M.: A benchmark for PH estimation algorithms: results for acyclic-PH. Commun. Stat. Stoch. Models 10(3), 661–677 (1994)
Buchholz, P., Felko, I., Kriege, J.: Transformation of acyclic phase type distributions for correlation fitting. In: Dudin, A., De Turck, K. (eds.) ASMTA 2013. LNCS, vol. 7984, pp. 96–111. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39408-9_8
Buchholz, P., Kriege, J.: A heuristic approach for fitting MAPs to moments and joint moments. In: Proceedings of the 6th International Conference on Quantitative Evaluation of SysTems (QEST 2009), pp. 53–62. IEEE Computer Society, Los Alamitos, CA, USA, (2009)
Buchholz, P., Kriege, J., Felko, I.: Input Modeling with Phase-Type Distributions and Markov Models - Theory and Applications. SpringerBriefs in Mathematics. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-319-06674-5
Buchholz, P., Telek, M.: Stochastic Petri nets with matrix exponentially distributed firing times. Perform. Eval. 67(12), 1373–1385 (2010)
David, A., Larry, S.: The least variable phase type distribution is Erlang. Commun. Stat. Stoch. Models 3(3), 467–473 (1987)
Fang, Y.: Hyper-Erlang distribution model and its applications in wireless mobile networks. Wirel. Netw. 7, 211–219 (2001)
Freedman, D., Diaconis, P.: On the histogram as a density estimator: \(L_2\) theory. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 57(4), 453–476 (1981)
Frühwirth-Schnatter, S.: Finite Mixture and Markov Switching Models. Springer Series in Statistics. Springer, New York (2006). https://doi.org/10.1007/978-0-387-35768-3
Frühwirth-Schnatter, S., Celeux, G., Robert, C.: Handbook of Mixture Analysis. Chapman & Hall/CRC Handbooks of Modern Statistical Methods. CRC Press, Taylor & Francis Group, Boca Raton (2019)
Hardy, G., Wright, E.: An Introduction to the Theory of Numbers, 5th edn. Oxford Science Publications. Clarendon Press, Oxford (1979)
Horváth, A., Telek, M.: Markovian modeling of real data traffic: heuristic phase type and MAP fitting of heavy tailed and fractal like samples. In: Calzarossa, M.C., Tucci, S. (eds.) Performance 2002. LNCS, vol. 2459, pp. 405–434. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45798-4_17
Horváth, G.: Moment matching-based distribution fitting with generalized hyper-Erlang distributions. In: Dudin, A., De Turck, K. (eds.) ASMTA 2013. LNCS, vol. 7984, pp. 232–246. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39408-9_17
Horváth, G., Telek, M.: On the canonical representation of phase type distributions. Perform. Eval. 66(8), 396–409 (2009). Selected Papers of the Fourth European Performance Engineering Workshop (EPEW) 2007 in Berlin
Internet Traffic Archive. ftp://ita.ee.lbl.gov/html/traces.html. Accessed: 13 Nov 2019
Johnson, M.A., Taaffe, M.R.: Matching moments to phase distributions: mixtures of Erlang distributions of common order. Commun. Stat. Stoch. Models 5(4), 711–743 (1989)
Khayari, R.E.A., Sadre, R., Haverkort, B.R.: Fitting world-wide web request traces with the EM-algorithm. Perform. Eval. 52(2–3), 175–191 (2003)
Lawson, C., Hanson, R.: Solving Least Squares Problems. Society for Industrial and Applied Mathematics. SIAM, New Delhi (1995)
Neuts, M.: A versatile Markovian point process. J. Appl. Probab. 16(4), 764–779 (1979)
Neuts, M.: Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach. Johns Hopkins Series in the Mathematical Sciences. Johns Hopkins University Press, Baltimore (1981)
O’Cinneide, C.A.: Phase-type distributions: open problems and a few properties. Commun. Stat. Stoch. Models 15(4), 731–757 (1999)
Okamura, H., Dohi, T., Trivedi, K.S.: A refined EM algorithm for PH distributions. Perform. Eval. 68(10), 938–954 (2011)
Panchenko, A., Thümmler, A.: Efficient phase-type fitting with aggregated traffic traces. Perform. Eval. 64(7–8), 629–645 (2007)
Reinecke, P., Krauß, T., Wolter, K.: Cluster-based fitting of phase-type distributions to empirical data. Comput. Math. Appl. Theory Pract. Stoch. Model. 64(12), 3840–3851 (2012)
Reinecke, P., Krauß, T., Wolter, K.: Phase-type fitting using HyperStar. In: Balsamo, M.S., Knottenbelt, W.J., Marin, A. (eds.) EPEW 2013. LNCS, vol. 8168, pp. 164–175. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40725-3_13
Telek, M., Horvath, G.: A minimal representation of Markov arrival processes and a moments matching method. Perform. Eval. 64(9–12), 1153–1168 (2007)
Thümmler, A., Buchholz, P., Telek, M.: A novel approach for fitting probability distributions to real trace data with the EM algorithm. In: Proceedings of the International Conference on Dependable Systems and Networks, DSN 2005, pp. 712–721, June 2005 (2005)
Titterington, D.M., Smith, A.F.M., Makov, U.E.: Statistical Analysis of Finite Mixture Distributions. Wiley, Hoboken (1985)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Bause, F. (2020). An Efficient Brute Force Approach to Fit Finite Mixture Distributions. In: Hermanns, H. (eds) Measurement, Modelling and Evaluation of Computing Systems. MMB 2020. Lecture Notes in Computer Science(), vol 12040. Springer, Cham. https://doi.org/10.1007/978-3-030-43024-5_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-43024-5_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-43023-8
Online ISBN: 978-3-030-43024-5
eBook Packages: Computer ScienceComputer Science (R0)