Abstract
Group signature allows group members to sign on behalf of the group anonymously, and incorporate some tracing mechanism to identify the actual signer. Multi-group signature (MGS), introduced by Ateniese and Tsudik (FC’99), is a proper generalization of group signature. It allows signers to sign messages anonymously on behalf of multiple groups and has extensive applications in electronic commerce. However, all existing MGS schemes are from classical assumptions and will be insecure once quantum computers come true.
In this paper, we propose the first MGS scheme in the lattice setting which is also the first quantum-resistant proposal. The keystone of our work is a zero-knowledge argument of knowledge (\( \mathsf {ZKAoK} \)) system of different syndromes of the same vector based on the work by Libert et al. (Asiacrypt’16) and Ling et al. (PKC’18). With additional signing and encryption layers, our \( \mathsf {ZKAoK} \) allows the signer to prove memberships in multiple groups simultaneously, which is the key issue on the MGS construction, and it can be of independent interest. For security proofs, we formalize the MGS model in the framework of Bellare et al. (CT-RSA’05).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, STOC 1996, pp. 99–108. ACM, New York (1996)
Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A Practical and provably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_16
Ateniese, G., Tsudik, G.: Some open issues and new directions in group signatures. In: Franklin, M. (ed.) FC 1999. LNCS, vol. 1648, pp. 196–211. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48390-X_15
Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3_11
Benjumea, V., Choi, S.G., Lopez, J., Yung, M.: Fair traceable multi-group signatures. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 231–246. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85230-8_21
Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_3
Boyen, X., Waters, B.: Compact group signatures without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_26
Camenisch, J.: Efficient and generalized group signatures. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 465–479. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_32
Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_22
Ducas, L., Micciancio, D.: Improved short lattice signatures in the standard model. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 335–352. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_19
Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12
Gordon, S.D., Katz, J., Vaikuntanathan, V.: A group signature scheme from lattice assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 395–412. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_23
Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7_23
Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_34
Laguillaumie, F., Langlois, A., Libert, B., Stehlé, D.: Lattice-based group signatures with logarithmic signature size. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 41–61. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_3
Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Signature schemes with efficient protocols and dynamic group signatures from lattice assumptions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 373–403. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_13
Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-based accumulators: logarithmic-size ring signatures and group signatures without trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_1
Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of knowledge for the ISIS problem, and applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_8
Ling, S., Nguyen, K., Wang, H.: Group signatures from lattices: simpler, tighter, shorter, ring-based. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 427–449. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_19
Ling, S., Nguyen, K., Wang, H., Xu, Y.: Constant-size group signatures from lattices. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 58–88. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_3
Lysyanskaya, A., Ramzan, Z.: Group blind digital signatures: a scalable solution to electronic cash. In: Hirchfeld, R. (ed.) FC 1998. LNCS, vol. 1465, pp. 184–197. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055483
Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision resistant. In: Electronic Colloquium on Computational Complexity (2005)
Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1
Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-way functions. Compil. Constr. 16(4), 365–411 (2007)
Nguyen, P.Q., Zhang, J., Zhang, Z.: Simpler efficient group signatures from lattices. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 401–426. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_18
Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assumptions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 145–166. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_8
del Pino, R., Lyubashevsky, V., Seiler, G.: Lattice-based group signatures and zero-knowledge proofs of automorphism stability. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 574–591. ACM (2018)
Stern, J.: A new paradigm for public key identification. IEEE Trans. Inf. Theory 42(6), 1757–1768 (1996)
Trolin, M., Wikström, D.: Hierarchical group signatures. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 446–458. Springer, Heidelberg (2005). https://doi.org/10.1007/11523468_37
Yang, R., Au, M.H., Lai, J., Xu, Q., Yu, Z.: Lattice-based techniques for accountable anonymity: composition of abstract Stern’s protocols and weak PRF with efficient protocols from LWR. IACR Cryptol. ePrint Arch. 2017, 781 (2017)
Acknowledgments
The authors would like to thank the anonymous reviewers of ICICS 2019 for helpful comments. This work is supported by the National Natural Science Foundation of China (Grant No. 61872359 and Grant No. 61936008).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Qiu, T., Hou, L., Lin, D. (2020). A Multi-Group Signature Scheme from Lattices. In: Zhou, J., Luo, X., Shen, Q., Xu, Z. (eds) Information and Communications Security. ICICS 2019. Lecture Notes in Computer Science(), vol 11999. Springer, Cham. https://doi.org/10.1007/978-3-030-41579-2_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-41579-2_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-41578-5
Online ISBN: 978-3-030-41579-2
eBook Packages: Computer ScienceComputer Science (R0)