Abstract
We aim to automatically generate event-oriented Wikipedia articles by viewing it as a multi-document summarization problem. In this paper, we propose a new model named WikiGen, which consists of two parts: the first one induces a general topic template from existing Wikipedia articles, and the second one generates a summary for each topic by collecting, filtering, and integrating relevant web news, which will be assembled into the full document. Our evaluation results show that WikiGen is capable of generating fluent and comprehensive Wikipedia documents and outperforms previous work, achieving state-of-the-art ROUGE scores.
F. Zhu and Z. Wang—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
\(\alpha = 1.0\) in experiments.
- 2.
\(k = 20\) in experiment.
References
Allan, J., Carbonell, J., Doddington, G., Yamron, J., Yang, Y.: Topic detection and tracking pilot study final report. In: Proceedings of the Darpa Broadcast News Transcription & Understanding Workshop (1998)
Aula, A.: Query formulation in web information search. In: ICWI (2003)
Banerjee, S., Mitra, P.: WikiWrite: generating Wikipedia articles automatically. In: IJCAI (2016)
Chu, Y.J., Liu, T.H.: On shortest arborescence of a directed graph. Sci. Sinica 14(10), 1396 (1965)
Edmonds, J.: Optimum branchings. J. Res. Nat. Bureau Standard B 71(4), 233–240 (1967)
Hammouda, K.M., Kamel, M.S.: Incremental document clustering using cluster similarity histograms. In: Proceedings of the IEEE/WIC International Conference on Web Intelligence (WI 2003). IEEE (2003)
Hu, L., et al.: Learning topic hierarchies for Wikipedia categories. In: ACL (2015)
Lebret, R., Grangier, D., Auli, M.: Neural text generation from structured data with application to the biography domain. In: EMNLP (2016)
Lin, C.Y.: Rouge: a package for automatic evaluation of summaries. In: ACL (2004)
Liu, P.J., et al.: Generating Wikipedia by summarizing long sequences. arXiv preprint arXiv:1801.10198 (2018)
Nallapati, R., Zhai, F., Zhou, B.: SummaRuNNer: a recurrent neural network based sequence model for extractive summarization of documents. In: AAAI (2017)
Sauper, C., Barzilay, R.: Automatically generating Wikipedia articles: a structure-aware approach. In: ACL (2009)
See, A., Liu, P.J., Manning, C.D.: Get to the point: summarization with pointer-generator networks. In: ACL (2017)
Shi, J., Liang, C., Hou, L., Li, J., Liu, Z., Zhang, H.: DeepChannel: salience estimation by contrastive learning for extractive document summarization. In: AAAI (2019)
Vaswani, A., et al.: Attention is all you need. In: NIPS (2017)
Acknowledgement
The work is supported by NSFC key projects (U1736204, 61533018, 61661146007), research fund from State Grid Zhejiang Electric Power Research Institute and THUNUS NExT Co-Lab.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhu, F. et al. (2020). Event-Oriented Wiki Document Generation. In: Wang, X., Lisi, F., Xiao, G., Botoeva, E. (eds) Semantic Technology. JIST 2019. Lecture Notes in Computer Science(), vol 12032. Springer, Cham. https://doi.org/10.1007/978-3-030-41407-8_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-41407-8_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-41406-1
Online ISBN: 978-3-030-41407-8
eBook Packages: Computer ScienceComputer Science (R0)