Event-Oriented Wiki Document Generation | SpringerLink
Skip to main content

Event-Oriented Wiki Document Generation

  • Conference paper
  • First Online:
Semantic Technology (JIST 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12032))

Included in the following conference series:

  • 1132 Accesses

Abstract

We aim to automatically generate event-oriented Wikipedia articles by viewing it as a multi-document summarization problem. In this paper, we propose a new model named WikiGen, which consists of two parts: the first one induces a general topic template from existing Wikipedia articles, and the second one generates a summary for each topic by collecting, filtering, and integrating relevant web news, which will be assembled into the full document. Our evaluation results show that WikiGen is capable of generating fluent and comprehensive Wikipedia documents and outperforms previous work, achieving state-of-the-art ROUGE scores.

F. Zhu and Z. Wang—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \(\alpha = 1.0\) in experiments.

  2. 2.

    \(k = 20\) in experiment.

References

  1. Allan, J., Carbonell, J., Doddington, G., Yamron, J., Yang, Y.: Topic detection and tracking pilot study final report. In: Proceedings of the Darpa Broadcast News Transcription & Understanding Workshop (1998)

    Google Scholar 

  2. Aula, A.: Query formulation in web information search. In: ICWI (2003)

    Google Scholar 

  3. Banerjee, S., Mitra, P.: WikiWrite: generating Wikipedia articles automatically. In: IJCAI (2016)

    Google Scholar 

  4. Chu, Y.J., Liu, T.H.: On shortest arborescence of a directed graph. Sci. Sinica 14(10), 1396 (1965)

    MathSciNet  MATH  Google Scholar 

  5. Edmonds, J.: Optimum branchings. J. Res. Nat. Bureau Standard B 71(4), 233–240 (1967)

    Article  MathSciNet  Google Scholar 

  6. Hammouda, K.M., Kamel, M.S.: Incremental document clustering using cluster similarity histograms. In: Proceedings of the IEEE/WIC International Conference on Web Intelligence (WI 2003). IEEE (2003)

    Google Scholar 

  7. Hu, L., et al.: Learning topic hierarchies for Wikipedia categories. In: ACL (2015)

    Google Scholar 

  8. Lebret, R., Grangier, D., Auli, M.: Neural text generation from structured data with application to the biography domain. In: EMNLP (2016)

    Google Scholar 

  9. Lin, C.Y.: Rouge: a package for automatic evaluation of summaries. In: ACL (2004)

    Google Scholar 

  10. Liu, P.J., et al.: Generating Wikipedia by summarizing long sequences. arXiv preprint arXiv:1801.10198 (2018)

  11. Nallapati, R., Zhai, F., Zhou, B.: SummaRuNNer: a recurrent neural network based sequence model for extractive summarization of documents. In: AAAI (2017)

    Google Scholar 

  12. Sauper, C., Barzilay, R.: Automatically generating Wikipedia articles: a structure-aware approach. In: ACL (2009)

    Google Scholar 

  13. See, A., Liu, P.J., Manning, C.D.: Get to the point: summarization with pointer-generator networks. In: ACL (2017)

    Google Scholar 

  14. Shi, J., Liang, C., Hou, L., Li, J., Liu, Z., Zhang, H.: DeepChannel: salience estimation by contrastive learning for extractive document summarization. In: AAAI (2019)

    Google Scholar 

  15. Vaswani, A., et al.: Attention is all you need. In: NIPS (2017)

    Google Scholar 

Download references

Acknowledgement

The work is supported by NSFC key projects (U1736204, 61533018, 61661146007), research fund from State Grid Zhejiang Electric Power Research Institute and THUNUS NExT Co-Lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juanzi Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, F. et al. (2020). Event-Oriented Wiki Document Generation. In: Wang, X., Lisi, F., Xiao, G., Botoeva, E. (eds) Semantic Technology. JIST 2019. Lecture Notes in Computer Science(), vol 12032. Springer, Cham. https://doi.org/10.1007/978-3-030-41407-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41407-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41406-1

  • Online ISBN: 978-3-030-41407-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics