On Fast Point Cloud Matching with Key Points and Parameter Tuning | SpringerLink
Skip to main content

On Fast Point Cloud Matching with Key Points and Parameter Tuning

  • Conference paper
  • First Online:
Pattern Recognition (ACPR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12046))

Included in the following conference series:

Abstract

Nowadays, three dimensional point cloud processing plays a very important role in a wide range of areas: autonomous driving, robotics, cartography, etc. Three dimensional point cloud registration pipelines have high computational complexity, mainly because of the cost of point feature signature calculation. By selecting keypoints and using only them for registration, data points that are interesting in some way, one can significantly reduce the number of points for which feature signatures are needed, hence the running time of registration pipelines. Consequently, keypoint detectors have a prominent role in an efficient processing pipeline. In this paper, we propose to analyze the usefulness of various keypoint detection algorithms and investigate whether and when it is worth to use a keypoint detector for registration. We define the goodness of a keypoint detection algorithm based on the success and quality of registration. Most keypoint detection methods require manual tuning of their parameters for best results. Here we revisit the most popular methods for keypoint detection in 3D point clouds and perform automatic parameter tuning with goodness of registration and run time as primary objectives. We compare keypoint-based registration to registration with randomly selected points and using all data points as a baseline. In contrast to former work, we use point clouds of different sizes, with and without noise, and register objects with different sizes.

Supported by organization x.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chetverikov, D., Stepanov, D., Krsek, P.: Robust Euclidean alignment of 3D point sets: the trimmed iterative closest point algorithm. Image Vis. Comput. 23, 299–309 (2005). https://doi.org/10.1016/j.imavis.2004.05.007

    Article  Google Scholar 

  2. Filipe, S., Alexandre, L.A.: A comparative evaluation of 3D keypoint detectors in a RGB-D object dataset. In: 2014 International Conference on Computer Vision Theory and Applications (VISAPP), vol. 1, pp. 476–483, January 2014

    Google Scholar 

  3. Fitzgibbon, A.: Robust registration of 2D and 3D point sets. Image Vis. Comput. 21, 1145–1153 (2002). https://doi.org/10.1016/j.imavis.2003.09.004

    Article  Google Scholar 

  4. Granger, S., Pennec, X.: Multi-scale EM-ICP: a fast and robust approach for surface registration. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 418–432. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47979-1_28

    Chapter  Google Scholar 

  5. Harris, C., Stephens, M.: A combined corner and edge detector, p. 50, January 1988

    Google Scholar 

  6. Holzer, S., Shotton, J., Kohli, P.: Learning to efficiently detect repeatable interest points in depth data. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 200–213. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33718-5_15

    Chapter  Google Scholar 

  7. Shi, J., Tomasi, C.: Good features to track. In: 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600, June 1994. https://doi.org/10.1109/CVPR.1994.323794

  8. Lai, K., Bo, L., Fox, D.: Unsupervised feature learning for 3D scene labeling. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 3050–3057, May 2014. https://doi.org/10.1109/ICRA.2014.6907298

  9. Li, J., Lee, G.: USIP: unsupervised stable interest point detection from 3D point clouds, March 2019

    Google Scholar 

  10. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  11. Mian, A., Bennamoun, M., Owens, R.: On the repeatability and quality of keypoints for local feature-based 3D object retrieval from cluttered scenes. Int. J. Comput. Vis. 89(2), 348–361 (2010). https://doi.org/10.1007/s11263-009-0296-z

    Article  Google Scholar 

  12. Phillips, J.M., Liu, R., Tomasi, C.: Outlier robust ICP for minimizing fractional RMSD. In: Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM 2007), pp. 427–434, August 2007. https://doi.org/10.1109/3DIM.2007.39

  13. Pomerleau, F., Colas, F., Siegwart, R.: A review of point cloud registration algorithms for mobile robotics. Found. Trends® Robot. 4, 1–104 (2015). https://doi.org/10.1561/2300000035

    Article  Google Scholar 

  14. Rusu, R., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3D registration, pp. 3212–3217, June 2009. https://doi.org/10.1109/ROBOT.2009.5152473

  15. Rusu, R., Cousins, S.: 3D is here: point cloud library (PCL), May 2011. https://doi.org/10.1109/ICRA.2011.5980567

  16. Salti, S., Tombari, F., Spezialetti, R., Stefano, L.D.: Learning a descriptor-specific 3D keypoint detector. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 2318–2326, December 2015. https://doi.org/10.1109/ICCV.2015.267

  17. Salti, S., Tombari, F., Stefano, L.D.: A performance evaluation of 3D keypoint detectors. In: 2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission, pp. 236–243, May 2011. https://doi.org/10.1109/3DIMPVT.2011.37

  18. Segal, A., Hähnel, D., Thrun, S.: Generalized-ICP, June 2009. https://doi.org/10.15607/RSS.2009.V.021

  19. Teran, L., Mordohai, P.: 3D interest point detection via discriminative learning. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 159–173. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_11

    Chapter  Google Scholar 

  20. Tonioni, A., Salti, S., Tombari, F., Spezialetti, R., Stefano, L.D.: Learning to detect good 3D keypoints. Int. J. Comput. Vis. 126(1), 1–20 (2018). https://doi.org/10.1007/s11263-017-1037-3

    Article  Google Scholar 

  21. Yang, J., Li, H., Campbell, D., Jia, Y.: Go-ICP: a globally optimal solution to 3D ICP point-set registration. IEEE Trans. Pattern Anal. Mach. Intell. 38, 2241–2254 (2015). https://doi.org/10.1109/TPAMI.2015.2513405

    Article  Google Scholar 

  22. Yew, Z.J., Lee, G.H.: 3DFeat-Net: weakly supervised local 3D features for point cloud registration. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 630–646. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_37

    Chapter  Google Scholar 

  23. Zhong, Y.: Intrinsic shape signatures: a shape descriptor for 3D object recognition, pp. 689–696, December 2009. https://doi.org/10.1109/ICCVW.2009.5457637

  24. Zhou, Q.-Y., Park, J., Koltun, V.: Fast global registration. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 766–782. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_47

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dániel Varga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Varga, D., Laki, S., Szalai-Gindl, J., Dobos, L., Vaderna, P., Formanek, B. (2020). On Fast Point Cloud Matching with Key Points and Parameter Tuning. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W. (eds) Pattern Recognition. ACPR 2019. Lecture Notes in Computer Science(), vol 12046. Springer, Cham. https://doi.org/10.1007/978-3-030-41404-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41404-7_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41403-0

  • Online ISBN: 978-3-030-41404-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics