A Streamlined Pipeline to Enable the Semantic Exploration of a Bookstore | SpringerLink
Skip to main content

A Streamlined Pipeline to Enable the Semantic Exploration of a Bookstore

  • Conference paper
  • First Online:
Digital Libraries: The Era of Big Data and Data Science (IRCDL 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1177))

Included in the following conference series:

  • 851 Accesses

Abstract

Searching in a library or book catalog is a recurrent task for researchers and common users alike. Thanks to semantic enrichment techniques, such as named-entity recognition and linking, texts may be automatically associated with entities in some reference knowledge graph(s). The association of a corpus of texts with a knowledge graph opens up the way to searching/exploring using novel paradigms. We present a pipeline that uses semantic enrichment and knowledge graph visualization techniques to enable the semantic exploration of an existing text corpus. The pipeline is meant to be ready for use and consists of existing free software tools and free software code contributed by us. We are developing and testing the pipeline on the field, by using it to access the catalog of a bookstore specialized in ancient Rome history.

This work is partly supported by the project ARCA (POR FESR Lazio 2014–2020 - Avviso pubblico “Creatività 2020”, domanda prot. n. A0128-2017-17189) and by the Centro di Eccellenza DTC Lazio through the project EcoDigit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8007
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10009
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://stanbol.apache.org/.

  2. 2.

    http://purl.org/dc/elements/1.1/.

  3. 3.

    http://schema.org/.

  4. 4.

    An extension of SPARQL designed to map JSON or XML content to RDF.

  5. 5.

    http://www.w3.org/ns/oa.

  6. 6.

    https://www.blazegraph.com/.

  7. 7.

    https://duraspace.org/fedora/.

  8. 8.

    https://github.com/sparql-generate/sparql-generate.

  9. 9.

    https://reactjs.org/.

  10. 10.

    https://www.ontodia.org/.

  11. 11.

    https://www.abbyy.com/en-eu/finereader/.

  12. 12.

    https://dandelion.eu/.

References

  1. Bikakis, N., Sellis, T.: Exploration and visualization in the web of big linked data: a survey of the state of the art. arXiv preprint. arXiv:1601.08059 (2016)

  2. Bolina, M.: Yewno discover. Nord. J. Inf. Lit. High. Educ. 11(1) (2019). https://doi.org/10.15845/noril.v11i1.2772

  3. Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 concepts and abstract syntax. W3C REC 25 February 2014. http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

  4. Dadzie, A.S., Rowe, M.: Approaches to visualising linked data: a survey. Semant. Web 2(2), 89–124 (2011)

    Article  Google Scholar 

  5. Harris, S., et al.: SPARQL 1.1 query language. W3C REC 21 March 2013. http://www.w3.org/TR/2013/REC-sparql11-query-20130321/

  6. Keim, D.A.: Information visualization and visual data mining. IEEE Trans. Visual. Comput. Graph. 8(1), 1–8 (2002)

    Article  MathSciNet  Google Scholar 

  7. Lefrançois, M., Zimmermann, A., Bakerally, N.: A SPARQL extension for generating RDF from heterogeneous formats. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp. 35–50. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58068-5_3

    Chapter  Google Scholar 

  8. Marie, N., Gandon, F.: Survey of linked data based exploration systems (2014)

    Google Scholar 

  9. Nadeau, D., Sekine, S.: A survey of named entity recognition and classification. Lingvisticae Investigationes 30(1), 3–26 (2007)

    Article  Google Scholar 

  10. Nisheva-Pavlova, M., Alexandrov, A.: GLOBDEF: a framework for dynamic pipelines of semantic data enrichment tools. In: Garoufallou, E., Sartori, F., Siatri, R., Zervas, M. (eds.) MTSR 2018. CCIS, vol. 846, pp. 159–168. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14401-2_15

    Chapter  Google Scholar 

  11. Ristoski, P., Paulheim, H.: Semantic web in data mining and knowledge discovery: a comprehensive survey. J. Web Semant. 36, 1–22 (2016)

    Article  Google Scholar 

  12. Shen, W., Wang, J., Han, J.: Entity linking with a knowledge base: issues, techniques, and solutions. IEEE Trans. Knowl. Data Eng. 27(2), 443–460 (2014)

    Article  Google Scholar 

  13. Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings of 1996 IEEE Symposium on Visual Languages, pp. 336–343 (1996)

    Google Scholar 

  14. Şimşek, U., Kärle, E., Fensel, D.: Machine readable web APIs with schema.org action annotations. In: Proceedings of SEMANTiCS 2018, pp. 255–261. Elsevier (2018)

    Google Scholar 

  15. Speicher, S., Arwe, J., Malhotra, A.: Linked data platform 1.0. W3C Recommendation 26 February 2015 (2015). http://www.w3.org/TR/2015/REC-ldp-20150226/

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miguel Ceriani , Eleonora Bernasconi or Massimo Mecella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ceriani, M., Bernasconi, E., Mecella, M. (2020). A Streamlined Pipeline to Enable the Semantic Exploration of a Bookstore. In: Ceci, M., Ferilli, S., Poggi, A. (eds) Digital Libraries: The Era of Big Data and Data Science. IRCDL 2020. Communications in Computer and Information Science, vol 1177. Springer, Cham. https://doi.org/10.1007/978-3-030-39905-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39905-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39904-7

  • Online ISBN: 978-3-030-39905-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics