Abstract
Searching in a library or book catalog is a recurrent task for researchers and common users alike. Thanks to semantic enrichment techniques, such as named-entity recognition and linking, texts may be automatically associated with entities in some reference knowledge graph(s). The association of a corpus of texts with a knowledge graph opens up the way to searching/exploring using novel paradigms. We present a pipeline that uses semantic enrichment and knowledge graph visualization techniques to enable the semantic exploration of an existing text corpus. The pipeline is meant to be ready for use and consists of existing free software tools and free software code contributed by us. We are developing and testing the pipeline on the field, by using it to access the catalog of a bookstore specialized in ancient Rome history.
This work is partly supported by the project ARCA (POR FESR Lazio 2014–2020 - Avviso pubblico “Creatività 2020”, domanda prot. n. A0128-2017-17189) and by the Centro di Eccellenza DTC Lazio through the project EcoDigit.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
An extension of SPARQL designed to map JSON or XML content to RDF.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
References
Bikakis, N., Sellis, T.: Exploration and visualization in the web of big linked data: a survey of the state of the art. arXiv preprint. arXiv:1601.08059 (2016)
Bolina, M.: Yewno discover. Nord. J. Inf. Lit. High. Educ. 11(1) (2019). https://doi.org/10.15845/noril.v11i1.2772
Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 concepts and abstract syntax. W3C REC 25 February 2014. http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
Dadzie, A.S., Rowe, M.: Approaches to visualising linked data: a survey. Semant. Web 2(2), 89–124 (2011)
Harris, S., et al.: SPARQL 1.1 query language. W3C REC 21 March 2013. http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
Keim, D.A.: Information visualization and visual data mining. IEEE Trans. Visual. Comput. Graph. 8(1), 1–8 (2002)
Lefrançois, M., Zimmermann, A., Bakerally, N.: A SPARQL extension for generating RDF from heterogeneous formats. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp. 35–50. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58068-5_3
Marie, N., Gandon, F.: Survey of linked data based exploration systems (2014)
Nadeau, D., Sekine, S.: A survey of named entity recognition and classification. Lingvisticae Investigationes 30(1), 3–26 (2007)
Nisheva-Pavlova, M., Alexandrov, A.: GLOBDEF: a framework for dynamic pipelines of semantic data enrichment tools. In: Garoufallou, E., Sartori, F., Siatri, R., Zervas, M. (eds.) MTSR 2018. CCIS, vol. 846, pp. 159–168. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14401-2_15
Ristoski, P., Paulheim, H.: Semantic web in data mining and knowledge discovery: a comprehensive survey. J. Web Semant. 36, 1–22 (2016)
Shen, W., Wang, J., Han, J.: Entity linking with a knowledge base: issues, techniques, and solutions. IEEE Trans. Knowl. Data Eng. 27(2), 443–460 (2014)
Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings of 1996 IEEE Symposium on Visual Languages, pp. 336–343 (1996)
Şimşek, U., Kärle, E., Fensel, D.: Machine readable web APIs with schema.org action annotations. In: Proceedings of SEMANTiCS 2018, pp. 255–261. Elsevier (2018)
Speicher, S., Arwe, J., Malhotra, A.: Linked data platform 1.0. W3C Recommendation 26 February 2015 (2015). http://www.w3.org/TR/2015/REC-ldp-20150226/
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Ceriani, M., Bernasconi, E., Mecella, M. (2020). A Streamlined Pipeline to Enable the Semantic Exploration of a Bookstore. In: Ceci, M., Ferilli, S., Poggi, A. (eds) Digital Libraries: The Era of Big Data and Data Science. IRCDL 2020. Communications in Computer and Information Science, vol 1177. Springer, Cham. https://doi.org/10.1007/978-3-030-39905-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-39905-4_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-39904-7
Online ISBN: 978-3-030-39905-4
eBook Packages: Computer ScienceComputer Science (R0)