Cancellable Face Biometrics Template Using AlexNet | SpringerLink
Skip to main content

Cancellable Face Biometrics Template Using AlexNet

  • Conference paper
  • First Online:
Applied Computing to Support Industry: Innovation and Technology (ACRIT 2019)

Abstract

Biometric systems with traits like gesture, voice, fingerprint, palm print, handwritten signature, hand geometry, face, and iris have been utilized for authentication. Through these traits, face trait is considered as one of the strongest and an important biometric element. In this work, a presentation of a new cancellable algorithm of face image which is dependent on AlexNet and Winner-Takes-All (WTA) hash method has been proposed. AlexNet is a Convolutional Neural Networks (CNNs) that reached a state-of-the-art level of recognition precision compared to other conventional machine learning methods in terms of feature execution. WTA is used for similarity purposes, whereas random binary orthogonal matrices are applied to produce the projected features of vectors. Fundação Educacional Inaciana dataset and Georgia tech face dataset were used in evaluating the performance of the proposed algorithm. Experimental results illustrate the proposed algorithm has satisfactory execution performance in terms of Equal Error Rate. Thus the proposed algorithm can be used as an alternative method in security biometric implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Das, S., et al.: Lip biometric template security framework using spatial steganography. Pattern Recogn. Lett. (2018). https://doi.org/10.1016/j.patrec.2018.06.026

    Article  Google Scholar 

  2. Awad, A.I.: From classical methods to animal biometrics: a review on cattle identification and tracking. Comput. Electron. Agric. 123, 423–435 (2016). https://doi.org/10.1016/j.compag.2016.03.014

    Article  Google Scholar 

  3. Ali, Z., Hoossain, M.S., Muhammad, G., Ullah, I., Abachi, H., Alamri, A.: Edge-centric multimodal authentication system using encrypted biometric template. Future Gener. Comput. Syst. 85, 76–87 (2018). https://doi.org/10.1016/j.future.2018.02.040

    Article  Google Scholar 

  4. Amirthalingam, G., Radhamani, G.: New chaff point based fuzzy vault for multimodal biometric cryptosystem using particle swarm optimization. J. King Saud Univ.-Comput. Inf. Sci. 28, 381–394 (2016). https://doi.org/10.1016/j.jksuci.2014.12.011

    Article  Google Scholar 

  5. Wong, W.J., Teoh, A.B., Kho, Y.H., Wong, M.D.: Kernel PCA enabled bit-string representation for minutiae-based cancellable fingerprint template. Pattern Recogn. 51, 197–208 (2016). https://doi.org/10.1016/j.patcog.2015.09.032

    Article  Google Scholar 

  6. Ratha, N.K., Chikkerur, S., Connell, J.H., Bolle, R.M.: Generating cancelable fingerprint templates. IEEE Trans. Pattern Anal. Mach. Intell. 29, 561–572 (2007). https://doi.org/10.1109/TPAMI.2007.1004

    Article  Google Scholar 

  7. Nguyen, K., Fookes, C., Sridharan, S., Tistarelli, M.: Super resolution for biometrics: a comprehensive survey. Pattern Recogn. 78, 23–42 (2018). https://doi.org/10.1016/j.patcog.2018.01.002

    Article  Google Scholar 

  8. Sarier, N.D.: Multimodal biometric identity based encryption. Future Gener. Comput. Syst. 80, 112–125 (2018). https://doi.org/10.1016/j.future.2017.09.078

    Article  Google Scholar 

  9. Chee, K.-Y., Jin, Z., Cai, D., Li, M., Yap, W.-S., Lai, Y.-L.: Cancellable speech template via random binary orthogonal matrices projection hashing. Pattern Recogn. 76, 273–287 (2018). https://doi.org/10.1016/j.patcog.2017.10.041

    Article  Google Scholar 

  10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: 25th International Conference on Neural Information Processing Systems (NIPS 2012), pp. 1097–1105 (2012)

    Google Scholar 

  11. Yagnik, J., Strelow, D., Ross, D.A., Lin, R.-S.: The power of comparative reasoning. In: IEEE International Conference on Computer Vision, pp. 2431–2438. IEEE Press, New York (2011). https://doi.org/10.1109/iccv.2011.6126527

  12. Jin, Z., Teoh, A.B., Goi, B.-M., Tay, Y.-H.: Biometric cryptosystems: a new biometric key binding and its implementation for fingerprint minutiae-based representation. Pattern Recogn. 56, 50–62 (2016). https://doi.org/10.1016/j.patcog.2016.02.024

    Article  Google Scholar 

  13. Wang, S., Yang, W., Hu, J.: Design of alignment-free cancelable fingerprint templates with zoned minutia pairs. Pattern Recogn. 66, 295–301 (2017). https://doi.org/10.1016/j.patcog.2017.01.019

    Article  Google Scholar 

  14. Murakami, T., Ohki, T., Takahashi, K.: Optimal sequential fusion for multibiometric cryptosystems. Inf. Fusion 32, 93–108 (2016). https://doi.org/10.1016/j.inffus.2016.02.002

    Article  Google Scholar 

  15. Dwivedi, R., Dey, S., Singh, R., Prasad, A.: A privacy-preserving cancelable iris generation schema using decimal encoding and look-up table mapping. Comput. Secur. 65, 373–386 (2017). https://doi.org/10.1016/j.cose.2016.10.004

    Article  Google Scholar 

  16. Umer, S., Dhara, B.C., Chandra, B.: A novel cancelable iris recognition system based on feature learning techniques. Inf. Sci. 406–407, 102–118 (2017). https://doi.org/10.1016/j.ins.2017.04.026

    Article  Google Scholar 

  17. Lai, Y.-L., et al.: Cancellable iris template generation based on indexing-first-one hashing. Pattern Recogn. 64, 105–117 (2017). https://doi.org/10.1016/j.patcog.2016.10.035

    Article  Google Scholar 

  18. Dwivedi, A., Kumar, S., Dwivedi, A., Singh, M.: Cancellable biometrics for security and privacy enforcement on semantic web. Int. J. Comput. Appl. 21, 0975–8887 (2018). https://doi.org/10.5120/2535-3460

    Article  Google Scholar 

  19. Yang, W., Wang, S., Zheng, G., Valli, C.: Impact of feature proportion on matching performance of multi-biometric system. ICT Express 5, 37–40 (2018). https://doi.org/10.1016/j.icte.2018.03.001

    Article  Google Scholar 

  20. Khan, S.H., Akbar, M.A., Shah-Zad, F., Farooq, M., Khan, Z.: Secure biometric template generation for multi-factor authentication. Pattern Recogn. 48, 458–472 (2015). https://doi.org/10.1016/j.patcog.2014.08.024

    Article  Google Scholar 

  21. Kaur, H., Khanna, P.: Gaussian random projection based non-invertible cancelable biometric templates. Comput. Sci. 54, 661–670 (2015). https://doi.org/10.1016/j.procs.2015.06.077

    Article  Google Scholar 

  22. Roy, S.S., Ahmed, M., Akhand, M.A.H.: Noisy image classification using hybrid deep learning methods. J. Inf. Commun. Technol. 17, 233–269 (2018)

    Google Scholar 

  23. Alom, M.Z., et al.: The History Began from Alexnet: A Comprehensive Survey on Deep Learning Approaches. ArXivabs/1803.01164 (2018). n. pag

    Google Scholar 

  24. Suh, H.K., Ijsselmuiden, J., Hofstee, J.W., Henten, E.J.: Transfer learning for the classification of sugar beet and volunteer potato under field conditions. Biosyst. Eng. 174, 50–65 (2018). https://doi.org/10.1016/j.biosystemseng.2018.06.017

    Article  Google Scholar 

  25. Fu, Y., Aldrich, C.: Froth image analysis by use of transfer learning and convolutional neural networks. Miner. Eng. 115, 68–78 (2018). https://doi.org/10.1016/j.mineng.2017.10.005

    Article  Google Scholar 

  26. Bai, C., Huang, L., Pan, X., Zheng, J., Chen, S.: Optimization of deep convolutional neural network for large scale image retrieval. Neurocomputing 303, 60–67 (2018). https://doi.org/10.1016/j.neucom.2018.04.034

    Article  Google Scholar 

  27. Artificial Intelligence Laboratory of FEI. https://fei.edu.br/~cet/facedatabase.html

  28. Centre for Signal and Image Processing. http://www.anefian.com/research/face_reco.htm

  29. Cherifi, F., Hemery, B., Giot, R., Pasquet, M., Rosenberger, C.: Performance evaluation of behavioral biometric systems. In: Behavioral Biometrics for Human Identification: Intelligent Applications, IGI Global Disseminator of Knowledge, vol. 21 (2009). https://doi.org/10.4018/978-1-60566-725-6.ch003

Download references

Acknowledgements

The researchers thank the Malaysian Ministry of Higher Education for subsidizing this investigation under Fundamental Research Grant Scheme, S/O code 12490.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiba Basim Alwan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alwan, H.B., Ku-Mahamud, K.R. (2020). Cancellable Face Biometrics Template Using AlexNet. In: Khalaf, M., Al-Jumeily, D., Lisitsa, A. (eds) Applied Computing to Support Industry: Innovation and Technology. ACRIT 2019. Communications in Computer and Information Science, vol 1174. Springer, Cham. https://doi.org/10.1007/978-3-030-38752-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38752-5_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38751-8

  • Online ISBN: 978-3-030-38752-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics