Abstract
While generative adversarial training becomes promising technology for many computer vision tasks especially in image processing domain, it has few works so far on instance level image retrieval domain. In this paper, we propose an instance level image retrieval method with generative adversarial training (ILRGAN). In this proposal, adversarial training is adopted in the retrieval procedure. Both generator and discriminator are redesigned for retrieval task: the generator tries to retrieve similar images and passes them to the discriminator. And the discriminator tries to discriminate the dissimilar images from the images retrieved and then passes the decision to the generator. Generator and discriminator play min-max game until the generator retrieves images that the discriminator can not discriminate the dissimilar images. Experiments on four widely used databases show that adversarial training really works for instance level image retrieval and the proposed ILRGAN can get promising retrieval performances.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Yelamarthi, S.K., Reddy, S.K., Mishra, A., Mittal, A.: A zero-shot framework for sketch based image retrieval. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 316–333. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_19
Babenko, A., Lempitsky, V.: Aggregating local deep features for image retrieval. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1269–1277 (2015)
Babenko, A., Slesarev, A., Chigorin, A., Lempitsky, V.: Neural codes for image retrieval. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 584–599. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_38
Bell, S., Bala, K.: Learning visual similarity for product design with convolutional neural networks. ACM Trans. Graph. 34(4), 98:1–98:10 (2015)
Chen, Z., Lin, J., Chandrasekhar, V., Duan, L.Y.: Gated square-root pooling for image instance retrieval. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 1982–1986. IEEE (2018)
Cong, B., Ling, H., Xiang, P., Zheng, J., Chen, S.: Optimization of deep convolutional neural network for large scale image retrieval. Neurocomputing 303, 60–67 (2018)
Dizaji, K.G., Zheng, F., Nourabadi, N.S., Yang, Y., Deng, C., Huang, H.: Unsupervised deep generative adversarial hashing network. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3664–3673 (2018)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)
Gordo, A., Almazán, J., Revaud, J., Larlus, D.: Deep image retrieval: learning global representations for image search. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 241–257. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_15
Gordo, A., Almazán, J., Revaud, J., Larlus, D.: End-to-end learning of deep visual representations for image retrieval. Int. J. Comput. Vis. 124(2), 237–254 (2017)
Guo, L., Liu, J., Wang, Y., Luo, Z., Wen, W., Lu, H.: Sketch-based image retrieval using generative adversarial networks. In: Proceedings of the ACM on Multimedia Conference, pp. 1267–1268 (2017)
Hoang, T., Do, T.T., Le Tan, D.K., Cheung, N.M.: Selective deep convolutional features for image retrieval. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 1600–1608. ACM (2017)
Huang, L., Bai, C., Lu, Y., Chen, S., Tian, Q.: Adversarial learning for content-based image retrieval. In: 2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), pp. 97–102 (2019)
Huang, X., Peng, Y., Yuan, M.: MHTN: modal-adversarial hybrid transfer network for cross-modal retrieval. IEEE Trans. Cybern. 1–13 (2018). https://doi.org/10.1109/TCYB.2018.2879846
Kalantidis, Y., Mellina, C., Osindero, S.: Cross-dimensional weighting for aggregated deep convolutional features. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9913, pp. 685–701. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46604-0_48
Kim, J., Yoon, S.E.: Regional attention based deep feature for image retrieval. In: British Machine Vision Conference (BMVC). BMVA (2018)
Li, H., Sun, F., Liu, L., Ling, W.: A novel traffic sign detection method via color segmentation and robust shape matching. Neurocomputing 169, 77–88 (2015)
Li, H., Wang, X., Tang, J., Zhao, C.: Combining global and local matching of multiple features for precise item image retrieval. Multimedia Syst. 19(1), 37–49 (2013)
Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Lv, Y., Zhou, W., Tian, Q., Li, H.: Scalable bag of selected deep features for visual instance retrieval. In: Schoeffmann, K., et al. (eds.) MMM 2018. LNCS, vol. 10705, pp. 239–251. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73600-6_21
Mei, S., Min, W., Duan, H., Jiang, S.: Instance-level object retrieval via deep region CNN. Multimedia Tools Appl. 78(10), 13247–13261 (2018)
Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Lost in quantization: improving particular object retrieval in large scale image databases. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8, June 2008
Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)
Radenović, F., Iscen, A., Tolias, G., Avrithis, Y., Chum, O.: Revisiting Oxford and Paris: large-scale image retrieval benchmarking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5706–5715 (2018)
Radenović, F., Tolias, G., Chum, O.: CNN image retrieval learns from bow: unsupervised fine-tuning with hard examples. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 3–20. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_1
Rui, Y., Huang, T.S., Chang, S.F.: Image retrieval: current techniques, promising directions, and open issues. J. Vis. Commun. Image Represent. 10(1), 39–62 (1999)
Sivic, Z.: Video Google: a text retrieval approach to object matching in videos. In: Proceedings Ninth IEEE International Conference on Computer Vision, vol. 2, pp. 1470–1477. IEEE (2003)
Song, J., He, T., Gao, L., Xu, X., Hanjalic, A., Shen, H.T.: Binary generative adversarial networks for image retrieval. In: AAAI Conference on Artificial Intelligence, pp. 394–401 (2018)
Tolias, G., Sicre, R., Jégou, H.: Particular object retrieval with integral max-pooling of CNN activations. In: International Conference on Learning Representations (ICRL), San Juan, Puerto Rico, pp. 1–12 (2016)
Xu, X., He, L., Lu, H., Gao, L., Ji, Y.: Deep adversarial metric learning for cross-modal retrieval. World Wide Web 22(2), 657–672 (2019)
Zheng, L., Yang, Y., Tian, Q.: SIFT meets CNN: a decade survey of instance retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 40(5), 1224–1244 (2017)
Acknowledgement
This work is funded by Zhejiang Provincial Natural Science Foundation of China under Grant No. LY18F020032, Natural Science Foundation of China under Grant No. 61976192, 61502424 and U1509207. The source code of this work will be released on http://www.escience.cn/people/congbai/index.html.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Li, H., Bai, C., Huang, L., Jiang, Y., Chen, S. (2020). Instance Image Retrieval with Generative Adversarial Training. In: Ro, Y., et al. MultiMedia Modeling. MMM 2020. Lecture Notes in Computer Science(), vol 11961. Springer, Cham. https://doi.org/10.1007/978-3-030-37731-1_31
Download citation
DOI: https://doi.org/10.1007/978-3-030-37731-1_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-37730-4
Online ISBN: 978-3-030-37731-1
eBook Packages: Computer ScienceComputer Science (R0)