Aspect Sentiment Classification Based on Sequence to Sequence Reinforced Learning | SpringerLink
Skip to main content

Aspect Sentiment Classification Based on Sequence to Sequence Reinforced Learning

  • Conference paper
  • First Online:
Human Centered Computing (HCC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11956))

Included in the following conference series:

  • 1484 Accesses

Abstract

The task of aspect sentiment classification (ASC) is a fundamental task in sentiment analysis. Given an aspect and a sentence, the task classifies the sentiment polarity expressed on the target in the sentence. Previous work usually distinguish the sentiment based on one-way LSTM, which are often complicated and need more training time. In this paper, motivated by the BERT from Google AI Language, we propose a novel two-way encoder-decoder framework that automatically extracts appropriate sentiment information according to sequence to sequence reinforced learning. We use reinforcement learning to explore the space of possible extractive targets, where useful information provided by earlier predicted antecedents could be utilized for making later coreference decisions. The experiments on SemEval datasets demonstrate the efficiency and effectiveness of our models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, Y., Xu, J., Yang, P., Sun, X.: Learning sentiment memories for sentiment modification without parallel data. In: Empirical Methods in Natural Language Processing (EMNLP), pp. 1097–1102 (2018)

    Google Scholar 

  2. Yi, L., Li, D., Li, P., Shi, S., Lam, W., Zhang, T.: Learning sentiment memories for sentiment modification without parallel data. In Empirical Methods in Natural Language Processing (EMNLP), pp. 3855–3864 (2018)

    Google Scholar 

  3. Keneshloo, Y., Shi, T., Ramakrishnan, N., Reddy, C.K.: Deep Reinforcement Learning for Sequence-to-Sequence Models. IEEE (2018)

    Google Scholar 

  4. Dahou, A., Elaziz, M.E.A., Zhou, J., Xiong, S.: Arabic sentiment classification using convolutional neural network and differential evolution algorithm. Comput. Int. Neurosc. 2537689:1–2537689:16 (2019)

    Article  Google Scholar 

  5. Ma, R., Wang, K., Qiu, T., Sangaiah, A.K., Lin, D., Liaqat, H.B.: Feature-based compositing memory networks for aspect-based sentiment classification in social Internet of Things. Future Gener. Comput. Syst. 92, 879–888 (2019)

    Article  Google Scholar 

  6. Zhang, T., Wu, X., Lin, M., Han, J., Hu, S.: Imbalanced sentiment classification enhanced with discourse marker. CoRR abs/1903.11919

    Google Scholar 

  7. Sharma, R., Bhattacharyya, P., Dandapat, S., Bhatty, H.S.: Identifying transferable information across domains for cross-domain sentiment classification. In: ACL, pp. 968–978 (2018)

    Google Scholar 

  8. Zhu, P., Qian, T.: Enhanced aspect level sentiment classification with auxiliary memory. In: COLING, pp. 1077–1087 (2018)

    Google Scholar 

  9. Lv, G., Wang, S., Liu, B., Chen, E., Zhang, K.: Sentiment classification by leveraging the shared knowledge from a sequence of domains. In: Li, G., Yang, J., Gama, J., Natwichai, J., Tong, Y. (eds.) DASFAA 2019. LNCS, vol. 11446, pp. 795–811. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18576-3_47

    Chapter  Google Scholar 

  10. Liu, S., Lee, I.: Sentiment classification with medical word embeddings and sequence representation for drug reviews. In: Siuly, S., Lee, I., Huang, Z., Zhou, R., Wang, H., Xiang, W. (eds.) HIS 2018. LNCS, vol. 11148, pp. 75–86. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01078-2_7

    Chapter  Google Scholar 

  11. Iqbal, F., et al.: A hybrid framework for sentiment analysis using genetic algorithm based feature reduction. IEEE Access 7, 14637–14652 (2019)

    Article  Google Scholar 

  12. Xu, G., Meng, Y., Qiu, X., Yu, Z., Wu, X.: Sentiment analysis of comment texts based on BiLSTM. IEEE Access 7, 51522–51532 (2019)

    Article  Google Scholar 

  13. Seifollahi, S., Shajari, M.: Word sense disambiguation application in sentiment analysis of news headlines: an applied approach to FOREX market prediction. J. Intell. Inf. Syst. 52(1), 57–83 (2019)

    Article  Google Scholar 

  14. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs: sentiment classification using machine learning techniques. In: Empirical Methods in Natural Language Processing, pp. 79–86 (2002)

    Google Scholar 

  15. Polanyi, L., Zaenen, A.: Contextual valence shifters. In: Shanahan, J.G., Qu, Y., Wiebe, J. (eds.) Computing Attitude and Affect in Text: Theory and Applications, pp. 1–10. Springer, Dordrecht (2006). https://doi.org/10.1007/1-4020-4102-0_1

    Chapter  Google Scholar 

  16. Pontiki, M., Galanis, D., Pavlopoulos, J., Papageorgiou, H., Androutsopoulos, I., Manandhar, S.: SemEval-2014 task4: aspect based sentiment analysis. In: ProWorkshop on Semantic Evaluation (SemEval-2014). Association for Computational Linguistics (2014)

    Google Scholar 

  17. Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C.D., Ng, A., Potts, C.: Recursive deep models for semantic compositionality over a sentiment treebank. In: Empirical Methods in Natural Language Processing, pp. 1631–1642 (2016)

    Google Scholar 

  18. Chen, P., Sun, Z., Bing, L., Yang, W.: Recurrent attention network on memory for aspect sentiment analysis. In: EMNLP, pp. 463–472 (2017)

    Google Scholar 

  19. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. In: NIPS (2014)

    Google Scholar 

  20. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011)

    MATH  Google Scholar 

  21. Bowman, S.R., Vilnis, L., Vinyals, O., Dai, A.M., Jozefowicz, R., Bengio, S.: Generating sentences from a continuous space. In: Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning, pp. 10–21 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chu, H., Wu, Y., Tang, Y., Mao, C. (2019). Aspect Sentiment Classification Based on Sequence to Sequence Reinforced Learning. In: Milošević, D., Tang, Y., Zu, Q. (eds) Human Centered Computing. HCC 2019. Lecture Notes in Computer Science(), vol 11956. Springer, Cham. https://doi.org/10.1007/978-3-030-37429-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37429-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37428-0

  • Online ISBN: 978-3-030-37429-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics