Belief Expansion in Subset Models | SpringerLink
Skip to main content

Belief Expansion in Subset Models

  • Conference paper
  • First Online:
Logical Foundations of Computer Science (LFCS 2020)

Abstract

Subset models provide a new semantics for justifcation logic. The main idea of subset models is that evidence terms are interpreted as sets of possible worlds. A term then justifies a formula if that formula is true in each world of the interpretation of the term.

In this paper, we introduce a belief expansion operator for subset models. We study the main properties of the resulting logic as well as the differences to a previous (symbolic) approach to belief expansion in justification logic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Artemov, S.N.: Operational modal logic. Technical report MSI 95–29, Cornell University (1995)

    Google Scholar 

  2. Artemov, S.N.: Explicit provability and constructive semantics. Bull. Symb. Log. 7(1), 1–36 (2001)

    Article  MathSciNet  Google Scholar 

  3. Artemov, S.N.: Justified common knowledge. TCS 357(1–3), 4–22 (2006). https://doi.org/10.1016/j.tcs.2006.03.009

    Article  MathSciNet  MATH  Google Scholar 

  4. Artemov, S.N.: The logic of justification. RSL 1(4), 477–513 (2008). https://doi.org/10.1017/S1755020308090060

    Article  MathSciNet  MATH  Google Scholar 

  5. Artemov, S.N.: The ontology of justifications in the logical setting. Stud. Log. 100(1–2), 17–30 (2012). https://doi.org/10.1007/s11225-012-9387-x

    Article  MathSciNet  MATH  Google Scholar 

  6. Artemov, S.N.: On aggregating probabilistic evidence. In: Artemov, S., Nerode, A. (eds.) LFCS 2016, vol. 9537, pp. 27–42. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27683-0-3

    Chapter  Google Scholar 

  7. Artemov, S.N., Fitting, M.: Justification logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, fall 2012 edn. (2012). http://plato.stanford.edu/archives/fall2012/entries/logic-justification/

  8. Artemov, S.N., Fitting, M.: Justification Logic: Reasoning with Reasons. Cambridge University Press, Cambridge (2019)

    Book  Google Scholar 

  9. Baltag, A., Renne, B., Smets, S.: The logic of justified belief, explicit knowledge, and conclusive evidence. APAL 165(1), 49–81 (2014). https://doi.org/10.1016/j.apal.2013.07.005

    Article  MathSciNet  MATH  Google Scholar 

  10. Bucheli, S., Kuznets, R., Renne, B., Sack, J., Studer, T.: Justified belief change. In: Arrazola, X., Ponte, M. (eds.) LogKCA-10, pp. 135–155. University of the Basque Country Press (2010)

    Google Scholar 

  11. Bucheli, S., Kuznets, R., Studer, T.: Justifications for common knowledge. Appl. Non-Class. Log. 21(1), 35–60 (2011). https://doi.org/10.3166/JANCL.21.35-60

    Article  MathSciNet  MATH  Google Scholar 

  12. Bucheli, S., Kuznets, R., Studer, T.: Partial realization in dynamic justification logic. In: Beklemishev, L.D., de Queiroz, R. (eds.) WoLLIC 2011. LNCS (LNAI), vol. 6642, pp. 35–51. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20920-8_9

    Chapter  MATH  Google Scholar 

  13. Bucheli, S., Kuznets, R., Studer, T.: Realizing public announcements by justifications. J. Comput. Syst. Sci. 80(6), 1046–1066 (2014). https://doi.org/10.1016/j.jcss.2014.04.001

    Article  MathSciNet  MATH  Google Scholar 

  14. Fitting, M.: The logic of proofs, semantically. APAL 132(1), 1–25 (2005). https://doi.org/10.1016/j.apal.2004.04.009

    Article  MathSciNet  MATH  Google Scholar 

  15. Kokkinis, I., Maksimović, P., Ognjanović, Z., Studer, T.: First steps towards probabilistic justification logic. Log. J. IGPL 23(4), 662–687 (2015). https://doi.org/10.1093/jigpal/jzv025

    Article  MathSciNet  MATH  Google Scholar 

  16. Kuznets, R., Studer, T.: Justifications, ontology, and conservativity. In: Bolander, T., Braüner, T., Ghilardi, S., Moss, L. (eds.) Advances in Modal Logic, vol. 9, pp. 437–458. College Publications (2012)

    Google Scholar 

  17. Kuznets, R., Studer, T.: Update as evidence: belief expansion. In: Artemov, S., Nerode, A. (eds.) LFCS 2013. LNCS, vol. 7734, pp. 266–279. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35722-0_19

    Chapter  Google Scholar 

  18. Kuznets, R., Studer, T.: Weak arithmetical interpretations for the logic of proofs. Log. J. IGPL 24(3), 424–440 (2016)

    Article  MathSciNet  Google Scholar 

  19. Kuznets, R., Studer, T.: Logics of Proofs and Justifications. College Publications (2019)

    Google Scholar 

  20. Lehmann, E., Studer, T.: Subset models for justification logic. In: Iemhoff, R., Moortgat, M., de Queiroz, R. (eds.) WoLLIC 2019. LNCS, vol. 11541, pp. 433–449. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-59533-6_26

    Chapter  Google Scholar 

  21. Lehmann, E., Studer, T.: Exploring subset models for justification logic (submitted)

    Google Scholar 

  22. Mkrtychev, A.: Models for the logic of proofs. In: Adian, S., Nerode, A. (eds.) LFCS 1997. LNCS, vol. 1234, pp. 266–275. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63045-7_27

    Chapter  MATH  Google Scholar 

  23. Renne, B.: Multi-agent justification logic: communication and evidence elimination. Synthese 185(S1), 43–82 (2012). https://doi.org/10.1007/s11229-011-9968-7

    Article  MathSciNet  MATH  Google Scholar 

  24. Studer, T.: Decidability for some justification logics with negative introspection. JSL 78(2), 388–402 (2013). https://doi.org/10.2178/jsl.7802030

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Science Foundation grant 200020_184625.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eveline Lehmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lehmann, E., Studer, T. (2020). Belief Expansion in Subset Models. In: Artemov, S., Nerode, A. (eds) Logical Foundations of Computer Science. LFCS 2020. Lecture Notes in Computer Science(), vol 11972. Springer, Cham. https://doi.org/10.1007/978-3-030-36755-8_6

Download citation

Publish with us

Policies and ethics