Abstract
Subset models provide a new semantics for justifcation logic. The main idea of subset models is that evidence terms are interpreted as sets of possible worlds. A term then justifies a formula if that formula is true in each world of the interpretation of the term.
In this paper, we introduce a belief expansion operator for subset models. We study the main properties of the resulting logic as well as the differences to a previous (symbolic) approach to belief expansion in justification logic.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Artemov, S.N.: Operational modal logic. Technical report MSI 95–29, Cornell University (1995)
Artemov, S.N.: Explicit provability and constructive semantics. Bull. Symb. Log. 7(1), 1–36 (2001)
Artemov, S.N.: Justified common knowledge. TCS 357(1–3), 4–22 (2006). https://doi.org/10.1016/j.tcs.2006.03.009
Artemov, S.N.: The logic of justification. RSL 1(4), 477–513 (2008). https://doi.org/10.1017/S1755020308090060
Artemov, S.N.: The ontology of justifications in the logical setting. Stud. Log. 100(1–2), 17–30 (2012). https://doi.org/10.1007/s11225-012-9387-x
Artemov, S.N.: On aggregating probabilistic evidence. In: Artemov, S., Nerode, A. (eds.) LFCS 2016, vol. 9537, pp. 27–42. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27683-0-3
Artemov, S.N., Fitting, M.: Justification logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, fall 2012 edn. (2012). http://plato.stanford.edu/archives/fall2012/entries/logic-justification/
Artemov, S.N., Fitting, M.: Justification Logic: Reasoning with Reasons. Cambridge University Press, Cambridge (2019)
Baltag, A., Renne, B., Smets, S.: The logic of justified belief, explicit knowledge, and conclusive evidence. APAL 165(1), 49–81 (2014). https://doi.org/10.1016/j.apal.2013.07.005
Bucheli, S., Kuznets, R., Renne, B., Sack, J., Studer, T.: Justified belief change. In: Arrazola, X., Ponte, M. (eds.) LogKCA-10, pp. 135–155. University of the Basque Country Press (2010)
Bucheli, S., Kuznets, R., Studer, T.: Justifications for common knowledge. Appl. Non-Class. Log. 21(1), 35–60 (2011). https://doi.org/10.3166/JANCL.21.35-60
Bucheli, S., Kuznets, R., Studer, T.: Partial realization in dynamic justification logic. In: Beklemishev, L.D., de Queiroz, R. (eds.) WoLLIC 2011. LNCS (LNAI), vol. 6642, pp. 35–51. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20920-8_9
Bucheli, S., Kuznets, R., Studer, T.: Realizing public announcements by justifications. J. Comput. Syst. Sci. 80(6), 1046–1066 (2014). https://doi.org/10.1016/j.jcss.2014.04.001
Fitting, M.: The logic of proofs, semantically. APAL 132(1), 1–25 (2005). https://doi.org/10.1016/j.apal.2004.04.009
Kokkinis, I., Maksimović, P., Ognjanović, Z., Studer, T.: First steps towards probabilistic justification logic. Log. J. IGPL 23(4), 662–687 (2015). https://doi.org/10.1093/jigpal/jzv025
Kuznets, R., Studer, T.: Justifications, ontology, and conservativity. In: Bolander, T., Braüner, T., Ghilardi, S., Moss, L. (eds.) Advances in Modal Logic, vol. 9, pp. 437–458. College Publications (2012)
Kuznets, R., Studer, T.: Update as evidence: belief expansion. In: Artemov, S., Nerode, A. (eds.) LFCS 2013. LNCS, vol. 7734, pp. 266–279. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35722-0_19
Kuznets, R., Studer, T.: Weak arithmetical interpretations for the logic of proofs. Log. J. IGPL 24(3), 424–440 (2016)
Kuznets, R., Studer, T.: Logics of Proofs and Justifications. College Publications (2019)
Lehmann, E., Studer, T.: Subset models for justification logic. In: Iemhoff, R., Moortgat, M., de Queiroz, R. (eds.) WoLLIC 2019. LNCS, vol. 11541, pp. 433–449. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-59533-6_26
Lehmann, E., Studer, T.: Exploring subset models for justification logic (submitted)
Mkrtychev, A.: Models for the logic of proofs. In: Adian, S., Nerode, A. (eds.) LFCS 1997. LNCS, vol. 1234, pp. 266–275. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63045-7_27
Renne, B.: Multi-agent justification logic: communication and evidence elimination. Synthese 185(S1), 43–82 (2012). https://doi.org/10.1007/s11229-011-9968-7
Studer, T.: Decidability for some justification logics with negative introspection. JSL 78(2), 388–402 (2013). https://doi.org/10.2178/jsl.7802030
Acknowledgements
This work was supported by the Swiss National Science Foundation grant 200020_184625.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Lehmann, E., Studer, T. (2020). Belief Expansion in Subset Models. In: Artemov, S., Nerode, A. (eds) Logical Foundations of Computer Science. LFCS 2020. Lecture Notes in Computer Science(), vol 11972. Springer, Cham. https://doi.org/10.1007/978-3-030-36755-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-36755-8_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-36754-1
Online ISBN: 978-3-030-36755-8
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)