Unsupervised Pre-training of the Brain Connectivity Dynamic Using Residual D-Net | SpringerLink
Skip to main content

Unsupervised Pre-training of the Brain Connectivity Dynamic Using Residual D-Net

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11955))

Included in the following conference series:

  • 2922 Accesses

Abstract

In this paper, we propose a novel unsupervised pre-training method to learn the brain dynamics using a deep learning architecture named residual D-net. As it is often the case in medical research, in contrast to typical deep learning tasks, the size of the resting-state functional Magnetic Resonance Image (rs-fMRI) datasets for training is limited. Thus, the available data should be very efficiently used to learn the complex patterns underneath the brain connectivity dynamics. To address this issue, we use residual connections to alleviate the training complexity through recurrent multi-scale representation and pre-training the architecture unsupervised way. We conduct two classification tasks to differentiate early and late stage Mild Cognitive Impairment (MCI) from Normal healthy Control (NC) subjects. The experiments verify that our proposed residual D-net indeed learns the brain connectivity dynamics, leading to significantly higher classification accuracy compared to previously published techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Availiable at http://adni.loni.usc.edu/.

  2. 2.

    DPARSF: Available at http://rfmri.org/DPARSF.

  3. 3.

    SPM 12: Available at http://www.fil.ion.ucl.ac.uk/spm.

  4. 4.

    AAL documentation available at http://www.gin.cnrs.fr/en/tools/aal-aal2/.

  5. 5.

    The code and pre-processed data is available at https://github.com/youngjoo-epfl/residualDnet.

References

  1. Aisen, P.S., et al.: Clinical core of the Alzheimer’s disease neuroimaging initiative: progress and plans. Alzheimer’s Dement. J. Alzheimer’s Assoc. 6(3), 239–246 (2010)

    Article  Google Scholar 

  2. Allen, E.A., Damaraju, E., Plis, S.M., Erhardt, E.B., Eichele, T., Calhoun, V.D.: Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 24(3), 663–676 (2014)

    Article  Google Scholar 

  3. Alom, M.Z., Hasan, M., Yakopcic, C., Taha, T.M., Asari, V.K.: Recurrent residual convolutional neural network based on u-net (R2U-Net) for medical image segmentation. arXiv preprint. arXiv:1802.06955 (2018)

  4. Alzheimer’s Association: 2016 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 12(4), 459–509 (2016)

    Google Scholar 

  5. Barker, W.W., et al.: Relative frequencies of Alzheimer disease, lewy body, vascular and frontotemporal dementia, and hippocampal sclerosis in the state of Florida brain bank. Alzheimer Dis. Assoc. Disord. 16(4), 203–212 (2002)

    Article  Google Scholar 

  6. Brown, C.J., Hamarneh, G.: Machine learning on human connectome data from MRI. arXiv preprint. arXiv:1611.08699 (2016)

  7. Buckner, R.L., Kelley, W.M., Petersen, S.E.: Frontal cortex contributes to human memory formation. Nat. Neurosci. 2(4), 311–314 (1999)

    Article  Google Scholar 

  8. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). arXiv preprint. arXiv:1511.07289 (2015)

  9. Friston, K.J., Frith, C.D., Frackowiak, R.S., Turner, R.: Characterizing dynamic brain responses with fMRI: a multivariate approach. NeuroImage 2(2, Part A), 166–172 (1995)

    Article  Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  11. Jack, C.R., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27(4), 685–691 (2008)

    Article  Google Scholar 

  12. Khazaee, A., Ebrahimzadeh, A., Babajani-Feremi, A.: Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer’s disease. Brain Imaging Behav. 10(3), 799–817 (2016)

    Article  Google Scholar 

  13. Kim, J., El-Khamy, M., Lee, J.: Residual LSTM: design of a deep recurrent architecture for distant speech recognition. arXiv preprint. arXiv:1701.03360 (2017)

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint. arXiv:1412.6980 (2014)

  15. Leonardi, N., et al.: Principal components of functional connectivity: a new approach to study dynamic brain connectivity during rest. NeuroImage 83, 937–950 (2013)

    Article  Google Scholar 

  16. Middleton, F.A., Strick, P.L.: Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res. Rev. 31(2–3), 236–250 (2000)

    Article  Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  18. Squire, L.R.: Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 99(2), 195 (1992)

    Article  Google Scholar 

  19. Squire, L.R., Stark, C.E.L., Clark, R.E.: The medial temporal lobe. Ann. Rev. Neurosci. 27(1), 279–306 (2004)

    Article  Google Scholar 

  20. Srivastava, N., Mansimov, E., Salakhudinov, R.: Unsupervised learning of video representations using LSTMs. In: International Conference on Machine Learning, pp. 843–852 (2015)

    Google Scholar 

  21. Suk, H.I., Wee, C.Y., Lee, S.W., Shen, D.: State-space model with deep learning for functional dynamics estimation in resting-state fMRI. NeuroImage 129, 292–307 (2016)

    Article  Google Scholar 

  22. Wang, Y., Tian, F.: Recurrent residual learning for sequence classification. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 938–943 (2016)

    Google Scholar 

  23. Ward, A., Tardiff, S., Dye, C., Arrighi, H.M.: Rate of conversion from prodromal alzheimer’s disease to alzheimer’s dementia: a systematic review of the literature. Dement. Geriatr. Cogn. Disord. Extra 3(1), 320–332 (2013)

    Article  Google Scholar 

  24. Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., Vapnik, V.: Feature selection for SVMs. In: Advances in Neural Information Processing Systems, pp. 668–674 (2001)

    Google Scholar 

  25. Wilson, R.S., Segawa, E., Boyle, P.A., Anagnos, S.E., Hizel, L.P., Bennett, D.A.: The natural history of cognitive decline in Alzheimer’s disease. Psychol. Aging 27(4), 1008–1017 (2012)

    Article  Google Scholar 

  26. Xingjian, S., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, pp. 802–810 (2015)

    Google Scholar 

  27. Zhang, X., Hu, B., Ma, X., Xu, L.: Resting-state whole-brain functional connectivity networks for MCI classification using L2-regularized logistic regression. IEEE Trans. NanoBiosci. 14(2), 237–247 (2015)

    Article  Google Scholar 

Download references

Acknowledgment

This research was supported in part by the European Union’s H2020 Framework Programme (H2020-MSCA-ITN-2014) under grant No. 642685 MacSeNet.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youngjoo Seo , Manuel Morante , Yannis Kopsinis or Sergios Theodoridis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Seo, Y., Morante, M., Kopsinis, Y., Theodoridis, S. (2019). Unsupervised Pre-training of the Brain Connectivity Dynamic Using Residual D-Net. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Lecture Notes in Computer Science(), vol 11955. Springer, Cham. https://doi.org/10.1007/978-3-030-36718-3_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36718-3_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36717-6

  • Online ISBN: 978-3-030-36718-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics