Abstract
We describe the process metadata of GRAIN, a complex language data corpus, as a show case for application of metadata in the Digital Humanities. While the creation of language resources usually involves some automatic processing ranging from format conversion to labeling of structural features, data selection, inspection and interpretation are important manual steps, which tend to be neglected in the description of scientific workflows. GRAIN makes use of a format which (i) maps all workflow steps to flexible triples of \(\{input,operator,output\}\) and (ii) treats manual and automatic steps equally. Moreover, the process metadata has been semi-automatically generated and allows for a straightforward visualization describing the creation of the resource.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Cf. [2] for the impact of a minor decision in the data creation process on several downstream tasks.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
The definition of ‘word’ is highly discussed among linguists, this contribution thus opts for a colloquial understanding of the term.
- 8.
About 140 interviews of 9–10 minutes each with up to 24 annotation layers.
- 9.
- 10.
The manual syntactic annotation is not in the GRAIN release, but work in progress.
- 11.
In the creation of GRAIN, git (https://git-scm.com/) was applied.
- 12.
About 6350 JSON structures with process metadata for the automatic part.
- 13.
- 14.
- 15.
- 16.
References
Eckart, K., Gärtner, M., Kuhn, J., Schweitzer, K.: Nützlich und nutzbar für die linguistische Forschung: Sprachtechnologische Infrastruktur. In: Lobin, H., Schneider, R., Witt, A. (eds.) Digitale Infrastrukturen für die germanistische Forschung, chap. 6, pp. 115–148. de Gruyter, Berlin/Boston (2018). https://doi.org/10.1515/9783110538663-007
Elming, J., Johannsen, A., Klerke, S., Lapponi, E., Martinez Alonso, H., Søgaard, A.: Down-stream effects of tree-to-dependency conversions. In: Proceedings of NAACL-HLT 2013, pp. 617–626. Association for Computational Linguistics, Atlanta, Georgia (2013)
Gärtner, M., Hahn, U., Hermann, S.: Supporting sustainable process documentation. In: Rehm, G., Declerck, T. (eds.) GSCL 2017. LNCS (LNAI), vol. 10713, pp. 284–291. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73706-5_24
Jung, K., Gärtner, M.: Approaches to sustainable process metadata. In: Simov, K., Eskevich, M. (eds.) Proceedings of CLARIN Annual Conference 2019, Leipzig, Germany (2019)
Lemnitzer, L., Zinsmeister, H.: Korpuslinguistik. Narr Francke Attempo, Tübingen (2015)
Riester, A., Baumann, S.: The RefLex Scheme - Annotation Guidelines, SinSpeC. Working Papers of the SFB 732, vol. 14, University of Stuttgart (2017). http://dx.doi.org/10.18419/opus-9011
Schweitzer, K., et al.: German radio interviews: the grain release of the SFB732 silver standard collection. In: Calzolari, N., et al. (eds.) Proceedings of LREC 2018. Miyazaki, Japan (2018). ISBN 979-10-95546-00-9
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Jung, K., Gärtner, M., Kuhn, J. (2019). Fine-GRAINed Process Metadata. In: Garoufallou, E., Fallucchi, F., William De Luca, E. (eds) Metadata and Semantic Research. MTSR 2019. Communications in Computer and Information Science, vol 1057. Springer, Cham. https://doi.org/10.1007/978-3-030-36599-8_33
Download citation
DOI: https://doi.org/10.1007/978-3-030-36599-8_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-36598-1
Online ISBN: 978-3-030-36599-8
eBook Packages: Computer ScienceComputer Science (R0)