Multi-agent Path Finding with Capacity Constraints | SpringerLink
Skip to main content

Multi-agent Path Finding with Capacity Constraints

  • Conference paper
  • First Online:
AI*IA 2019 – Advances in Artificial Intelligence (AI*IA 2019)

Abstract

In multi-agent path finding (MAPF) the task is to navigate agents from their starting positions to given individual goals. The problem takes place in an undirected graph whose vertices represent positions and edges define the topology. Agents can move to neighbor vertices across edges. In the standard MAPF, space occupation by agents is modeled by a capacity constraint that permits at most one agent per vertex. We suggest an extension of MAPF in this paper that permits more than one agent per vertex. Propositional satisfiability (SAT) models for these extensions of MAPF are studied. We focus on modeling capacity constraints in SAT-based formulations of MAPF and evaluation of performance of these models. We extend two existing SAT-based formulations with vertex capacity constraints: MDD-SAT and SMT-CBS where the former is an approach that builds the model in an eager way while the latter relies on lazy construction of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The notation \(path(a_i)\) refers to path in the form of a sequence of vertices and edges connecting \(\alpha _0(a_i)\) and \(\alpha _+(a_i)\) while \(\xi \) assigns the cost to a given path.

  2. 2.

    Dealing with objectives is out of scope of this paper. We refer the reader to [31] for more detailed discussion.

References

  1. Audemard, G., Lagniez, J.-M., Simon, L.: Improving glucose for incremental SAT solving with assumptions: application to MUS extraction. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 309–317. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39071-5_23

    Chapter  MATH  Google Scholar 

  2. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In: IJCAI, pp. 399–404 (2009)

    Google Scholar 

  3. Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of Boolean cardinality constraints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 108–122. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45193-8_8

    Chapter  MATH  Google Scholar 

  4. Biere, A., Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam (2009)

    MATH  Google Scholar 

  5. Bofill, M., Palahí, M., Suy, J., Villaret, M.: Solving constraint satisfaction problems with SAT modulo theories. Constraints 17(3), 273–303 (2012)

    Article  MathSciNet  Google Scholar 

  6. Boyarski, E., et al.: ICBS: improved conflict-based search algorithm for multi-agent pathfinding. In: IJCAI, pp. 740–746 (2015)

    Google Scholar 

  7. Dresner, K., Stone, P.: A multiagent approach to autonomous intersection management. JAIR 31, 591–656 (2008)

    Article  Google Scholar 

  8. Hönig, W., et al.: Summary: multi-agent path finding with kinematic constraints. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, pp. 4869–4873 (2017)

    Google Scholar 

  9. Kornhauser, D., Miller, G.L., Spirakis, P.G.: Coordinating pebble motion on graphs, the diameter of permutation groups, and applications. In: FOCS 1984, pp. 241–250 (1984)

    Google Scholar 

  10. Kumar, K., Romanski, J., Hentenryck, P.V.: Optimizing infrastructure enhancements for evacuation planning. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 3864–3870. AAAI Press (2016)

    Google Scholar 

  11. Li, J., Surynek, P., Felner, A., Ma, H., Koenig, S.: Multi-agent path finding for large agents. In: AAAI, pp. 7627–7634. AAAI Press (2019)

    Google Scholar 

  12. Liu, S., Mohta, K., Atanasov, N., Kumar, V.: Towards search-based motion planning for micro aerial vehicles. CoRR abs/1810.03071 (2018). http://arxiv.org/abs/1810.03071

  13. Ma, H., et al.: Overview: generalizations of multi-agent path finding to real-world scenarios. CoRR abs/1702.05515 (2017). http://arxiv.org/abs/1702.05515

  14. Ma, H., Wagner, G., Felner, A., Li, J., Kumar, T.K.S., Koenig, S.: Multi-agent path finding with deadlines. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, 13–19 July 2018, Stockholm, Sweden, pp. 417–423 (2018)

    Google Scholar 

  15. Nieuwenhuis, R.: SAT modulo theories: getting the best of SAT and global constraint filtering. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 1–2. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15396-9_1

    Chapter  Google Scholar 

  16. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J. ACM 53(6), 937–977 (2006)

    Article  MathSciNet  Google Scholar 

  17. Ratner, D., Warmuth, M.K.: Finding a shortest solution for the N \(\times \) N extension of the 15-puzzle is intractable. In: AAAI, pp. 168–172 (1986)

    Google Scholar 

  18. Ryan, M.R.K.: Exploiting subgraph structure in multi-robot path planning. J. Artif. Intell. Res. (JAIR) 31, 497–542 (2008)

    Article  Google Scholar 

  19. Sharon, G., Stern, R., Felner, A., Sturtevant, N.: Conflict-based search for optimal multi-agent pathfinding. Artif. Intell. 219, 40–66 (2015)

    Article  MathSciNet  Google Scholar 

  20. Sharon, G., Stern, R., Goldenberg, M., Felner, A.: The increasing cost tree search for optimal multi-agent pathfinding. Artif. Intell. 195, 470–495 (2013)

    Article  MathSciNet  Google Scholar 

  21. Sharon, G., Stern, R., Felner, A., Sturtevant, N.R.: Conflict-based search for optimal multi-agent path finding. In: AAAI (2012)

    Google Scholar 

  22. Silva, J., Lynce, I.: Towards robust CNF encodings of cardinality constraints. In: CP, pp. 483–497 (2007)

    Google Scholar 

  23. Silver, D.: Cooperative pathfinding. In: AIIDE, pp. 117–122 (2005)

    Google Scholar 

  24. Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005). https://doi.org/10.1007/11564751_73

    Chapter  MATH  Google Scholar 

  25. Standley, T.: Finding optimal solutions to cooperative pathfinding problems. In: AAAI, pp. 173–178 (2010)

    Google Scholar 

  26. Sturtevant, N.R.: Benchmarks for grid-based pathfinding. Comput. Intell. AI Games 4(2), 144–148 (2012)

    Article  Google Scholar 

  27. Surynek, P.: A novel approach to path planning for multiple robots in bi-connected graphs. In: ICRA 2009, pp. 3613–3619 (2009)

    Google Scholar 

  28. Surynek, P.: Time-expanded graph-based propositional encodings for makespan-optimal solving of cooperative path finding problems. Ann. Math. Artif. Intell. 81(3–4), 329–375 (2017)

    Article  MathSciNet  Google Scholar 

  29. Surynek, P.: Lazy modeling of variants of token swapping problem and multi-agent path finding through combination of satisfiability modulo theories and conflict-based search. CoRR abs/1809.05959 (2018). http://arxiv.org/abs/1809.05959

  30. Surynek, P.: Unifying search-based and compilation-based approaches to multi-agent path finding through satisfiability modulo theories. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019, pp. 1177–1183. ijcai.org (2019)

    Google Scholar 

  31. Surynek, P., Felner, A., Stern, R., Boyarski, E.: Efficient SAT approach to multi-agent path finding under the sum of costs objective. In: ECAI, pp. 810–818 (2016)

    Google Scholar 

  32. Wang, K., Botea, A.: MAPP: a scalable multi-agent path planning algorithm with tractability and completeness guarantees. JAIR 42, 55–90 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research has been supported by GAČR - the Czech Science Foundation, grant registration number 19-17966S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Surynek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Surynek, P., Kumar, T.K.S., Koenig, S. (2019). Multi-agent Path Finding with Capacity Constraints. In: Alviano, M., Greco, G., Scarcello, F. (eds) AI*IA 2019 – Advances in Artificial Intelligence. AI*IA 2019. Lecture Notes in Computer Science(), vol 11946. Springer, Cham. https://doi.org/10.1007/978-3-030-35166-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35166-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35165-6

  • Online ISBN: 978-3-030-35166-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics