PRONOM: Proof-Search and Countermodel Generation for Non-normal Modal Logics | SpringerLink
Skip to main content

PRONOM: Proof-Search and Countermodel Generation for Non-normal Modal Logics

  • Conference paper
  • First Online:
AI*IA 2019 – Advances in Artificial Intelligence (AI*IA 2019)

Abstract

We present PRONOM, a theorem prover and countermodel generator for non-normal modal logics. PRONOM implements some labelled sequent calculi recently introduced for the basic system \(\mathbf {E}\) and its extensions with axioms M, N, and C based on bi-neighbourhood semantics. PRONOM is inspired by the methodology of and is implemented in Prolog. When a modal formula is valid, then PRONOM computes a proof (a closed tree) in the labelled calculi having that formula as a root in the labelled calculi, otherwise PRONOM is able to extract a model falsifying it from an open, saturated branch. The paper shows some experimental results, witnessing that the performances of PRONOM are promising.

Supported by the ANR project TICAMORE ANR-16-CE91-0002-01, the Academy of Finland project 1308664 and INdAM project GNCS 2019 “METALLIC #2”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A complete description of the whole cube of NNML will be provided in Sect. 2.

  2. 2.

    As a difference with [4] here terms are multisets rather than sets. This is ininfluent for the properties of the calculi.

  3. 3.

    The user can run PRONOM without using the interface of the web application. To this aim, he just need to invoke the goal prove(f).

References

  1. Alenda, R., Olivetti, N., Pozzato, G.L.: CSL-lean: a theorem-prover for the logic of comparative concept similarity. Electron. Notes Theoret. Comput. Sci. (ENTCS) 262, 3–16 (2010)

    Article  MathSciNet  Google Scholar 

  2. Askounis, D., Koutras, C.D., Zikos, Y.: Knowledge means ‘all’, belief means ‘most’. J. Appl. Non-Classical Logics 26(3), 173–192 (2016)

    Article  MathSciNet  Google Scholar 

  3. Chellas, B.F.: Modal Logic. Cambridge University Press, Cambridge (1980)

    Google Scholar 

  4. Dalmonte, T., Olivetti, N., Negri, S.: Non-normal modal logics: bi-neighbourhood semantics and its labelled calculi. In: Bezhanishvili, G., D’Agostino, G., Metcalfe, G., Studer, T. (eds.) Advances in Modal Logic 12, Proceedings of the 12th Conference on Advances in Modal Logic, 27–31 August 2018, Held in Bern, Switzerland, pp. 159–178. College Publications (2018)

    Google Scholar 

  5. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Analytic tableaux for KLM preferential and cumulative logics. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 666–681. Springer, Heidelberg (2005). https://doi.org/10.1007/11591191_46

    Chapter  MATH  Google Scholar 

  6. Giordano, L., Gliozzi, V., Pozzato, G.L.: KLMLean 2.0: a theorem prover for KLM logics of nonmonotonic reasoning. In: Olivetti, N. (ed.) TABLEAUX 2007. LNCS (LNAI), vol. 4548, pp. 238–244. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73099-6_19

    Chapter  MATH  Google Scholar 

  7. Girlando, M., Lellmann, B., Olivetti, N., Pozzato, G.L., Vitalis, Q.: VINTE: an implementation of internal calculi for Lewis’ logics of counterfactual reasoning. In: Schmidt, R.A., Nalon, C. (eds.) TABLEAUX 2017. LNCS (LNAI), vol. 10501, pp. 149–159. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66902-1_9

    Chapter  Google Scholar 

  8. Giunchiglia, E., Tacchella, A., Giunchiglia, F.: SAT-based decision procedures for classical modal logics. J. Automated Reason. 28(2), 143–171 (2002)

    Article  MathSciNet  Google Scholar 

  9. Hansen, H.: Tableau games for coalition logic and alternating-time temporal logic-theory and implementation. Master’s thesis, University of Amsterdam (2004)

    Google Scholar 

  10. Lavendhomme, R., Lucas, T.: Sequent calculi and decision procedures for weak modal systems. Studia Logica 65, 121–145 (2000)

    Article  MathSciNet  Google Scholar 

  11. Lellmann, B.: Countermodels for non-normal modal logics via nested sequents. In: Bezhanishvili, N., Venema, Y. (eds.) SYSMICS2019 - Booklet of Abstracts, pp. 107–110. Language and Computation University of Amsterdam, Institute for Logic (2019)

    Google Scholar 

  12. Negri, S.: Proof theory for non-normal modal logics: the neighbourhood formalism and basic results. IfCoLog J. Log. Appl. 4(4), 1241–1286 (2017)

    Google Scholar 

  13. Olivetti, N., Pozzato, G.L.: CondLean: a theorem prover for conditional logics. In: Cialdea Mayer, M., Pirri, F. (eds.) TABLEAUX 2003. LNCS (LNAI), vol. 2796, pp. 264–270. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45206-5_23

    Chapter  Google Scholar 

  14. Olivetti, N., Pozzato, G.L.: CondLean 3.0: improving condlean for stronger conditional logics. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 328–332. Springer, Heidelberg (2005). https://doi.org/10.1007/11554554_27

    Chapter  Google Scholar 

  15. Olivetti, N., Pozzato, G.L.: Theorem proving for conditional logics: CondLean and GoalDuck. J. Appl. Non-Classical Logics 18, 427–473 (2008)

    Article  MathSciNet  Google Scholar 

  16. Olivetti, N., Pozzato, G.L.: NESCOND: an implementation of nested sequent calculi for conditional logics. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 511–518. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-6_39

    Chapter  Google Scholar 

  17. Olivetti, N., Pozzato, G.L.: Nested sequent calculi and theorem proving for normal conditional logics: the theorem prover NESCOND. Intelligenza Artificiale 9, 109–125 (2015)

    Article  Google Scholar 

  18. Pacuit, E.: Neighborhood Semantics for Modal Logic. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-67149-9

    Book  Google Scholar 

  19. Pauly, M.: A modal logic for coalitional power in games. J. Logic Comput. 12(1), 149–166 (2002)

    Article  MathSciNet  Google Scholar 

  20. Ross, A.: Imperatives and logic. Theoria 7, 53–71 (1941)

    Google Scholar 

  21. Vardi, M.Y.: On epistemic logic and logical omniscience. In: Theoretical Aspects of Reasoning About Knowledge, pp. 293–305. Elsevier (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gian Luca Pozzato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dalmonte, T., Negri, S., Olivetti, N., Pozzato, G.L. (2019). PRONOM: Proof-Search and Countermodel Generation for Non-normal Modal Logics. In: Alviano, M., Greco, G., Scarcello, F. (eds) AI*IA 2019 – Advances in Artificial Intelligence. AI*IA 2019. Lecture Notes in Computer Science(), vol 11946. Springer, Cham. https://doi.org/10.1007/978-3-030-35166-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35166-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35165-6

  • Online ISBN: 978-3-030-35166-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics