Abstract
Decentralized solutions are emerging as promising candidates to overcome the privacy risks associated with centralized data services. Such solutions suffer however from their own range of privacy vulnerabilities, arising from untrusted and malicious peers. In this paper, we consider the emblematic problem of privacy-preserving decentralized averaging, and propose a novel gossip protocol that exchanges noise for several rounds before starting to exchange actual data. This makes it hard for an honest but curious attacker to know whether a user is transmitting noise or actual data. Our protocol and analysis do not assume a lock-step execution, and demonstrate improved resilience to colluding attackers. We prove the correctness of this protocol as well as several privacy results. Finally, we provide simulation results about the efficiency of our averaging protocol.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The code used for these experiments is available at https://github.com/ALRBP/Private_Gossip_Average.
References
Allard, T., Frey, D., Giakkoupis, G., Lepiller, J.: Lightweight privacy-preserving averaging for the Internet of Things (2016)
Allard, T., Hébrail, G., Masseglia, F., Pacitti, E.: Chiaroscuro: transparency and privacy for massive personal time-series clustering. In: ACM SIGMOD 2015, pp. 779–794 (2015)
Allavena, A., Demers, A., Hopcroft, J.E.: Correctness of a gossip based membership protocol. In: Proceedings of the Twenty-fourth Annual ACM Symposium on Principles of Distributed Computing, pp. 292–301. ACM (2005)
Bortnikov, E., Gurevich, M., Keidar, I., Kliot, G., Shraer, A.: Brahms: Byzantine resilient random membership sampling. Comput. Netw. 53(13), 2340–2359 (2009)
Clifton, C., Kantarcioglu, M., Vaidya, J., Lin, X., Zhu, M.Y.: Tools for privacy preserving distributed data mining. ACM SIGKDD Explor. Newsl. 4, 28–34 (2002)
Coretti, S., Garay, J., Hirt, M., Zikas, V.: Constant-round asynchronous multi-party computation based on one-way functions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 998–1021. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_33
Danner, G., Jelasity, M.: Fully distributed privacy preserving mini-batch gradient descent learning. In: Bessani, A., Bouchenak, S. (eds.) DAIS 2015. LNCS, vol. 9038, pp. 30–44. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19129-4_3
Dellenbach, P., Bellet, A., Ramon, J.: Hiding in the crowd: a massively distributed algorithm for private averaging with malicious adversaries. CoRR (2018)
Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79228-4_1
Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14
Frikken, K.B.: Secure multiparty computation. In: Atallah, M.J., Blanton, M. (eds.) Algorithms and Theory of Computation Handbook, pp. 14.1–14.16. Chapman & Hall/CRC (2010)
Gao, H., Zhang, C., Ahmad, M., Wang, Y.: Privacy-preserving average consensus on directed graphs using push-sum. In: 2018 IEEE Conference on Communications and Network Security (CNS), pp. 1–9. IEEE (2018)
Gupta, N., Chopra, N.: Confidentiality in distributed average information consensus. In: 2016 IEEE 55th Conference on Decision and Control (CDC), pp. 6709–6714. IEEE (2016)
Hadjicostis, C.N.: Privacy preserving distributed average consensus via homomorphic encryption. In: 2018 IEEE Conference on Decision and Control (CDC), pp. 1258–1263. IEEE (2018)
He, J., Cai, L.: Differential private noise adding mechanism: basic conditions and its application. In: 2017 American Control Conference (ACC), pp. 1673–1678. IEEE (2017)
He, J., Cai, L., Cheng, P., Pan, J., Shi, L.: Consensus-based privacy-preserving data aggregation. IEEE Trans. Autom. Control (2016)
He, J., Cai, L., Cheng, P., Pan, J., Shi, L.: Distributed privacy-preserving data aggregation against dishonest nodes in network systems. IEEE Internet Things J. 6(2), 1462–1470 (2019)
He, J., Cai, L., Zhao, C., Cheng, P., Guan, X.: Privacy-preserving average consensus: privacy analysis and optimal algorithm design. IEEE Trans. Signal Inf. Process. Netw. 5(1), 127–138 (2019)
Huang, Z., Mitra, S., Dullerud, G.: Differentially private iterative synchronous consensus. In: Proceedings of the 2012 ACM Workshop on Privacy in the Electronic Society, WPES 2012, pp. 81–90. ACM (2012)
Jelasity, M., Montresor, A., Babaoglu, O.: Gossip-based aggregation in large dynamic networks. ACM Trans. Comput. Syst. 23(3), 219–252 (2005)
Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.-M., van Steen, M.: Gossip-based peer sampling. ACM ToCS 25(3), 8 (2007)
Kempe, D., Dobra, A., Gehrke, J.E.: Gossip-based computation of aggregate information. In: Proceedings of the Twenty-Fourth Annual ACM Symposium on Principles of Distributed Computing, pp. 482–491 (2003)
Lepiller, J.: Private decentralized aggregation (2016)
Liu, Q., Ren, X., Mo, Y.: Secure and privacy preserving average consensus. In: 2017 11th Asian Control Conference (ASCC), pp. 274–279. IEEE (2017)
Liu-Zhang, C.-D., Loss, J., Maurer, U., Moran, T., Tschudi, D.: Robust MPC: asynchronous responsiveness yet synchronous security. In: Theory and Practice of Multi-Party Computation Workshops (2019)
Manitara, N.E., Hadjicostis, C.N.: Privacy-preserving asymptotic average consensus. In: 2013 European Control Conference (ECC), pp. 760–765. IEEE (2013)
Mo, Y., Murray, R.M.: Privacy preserving average consensus. In: 53rd IEEE Conference on Decision and Control, pp. 2154–2159. IEEE (2014)
Nédelec, B., Tanke, J., Molli, P., Mostéfaoui, A., Frey, D.: An adaptive peer-sampling protocol for building networks of browsers. World Wide Web 21, 629–661 (2017)
Nozari, E., Tallapragada, P., Cortés, J.: Differentially private average consensus: obstructions, trade-offs, and optimal algorithm design. Automatica 81, 221–231 (2015)
Ruan, M., Gao, H., Wang, Y.: Secure and privacy-preserving consensus. IEEE Trans. Autom. Control (2019)
Sheikh, R., Kumar, B., Mishra, D.K.: A distributed k-secure sum protocol for secure multi-party computations. J. Comput. 2, 68–72 (2010)
Thobaben, R., Dán, G., Sandberg, H.: Wiretap codes for secure multi-party computation. In: 2014 IEEE Globecom Workshops (GC Wkshps), pp. 1349–1354. IEEE (2014)
Wang, A., Liao, X., He, H.: Event-triggered differentially private average consensus for multi-agent network. IEEE/CAA J. Automatica Sinica 6(1), 75–83 (2019)
Wang, X., He, J., Cheng, P., Chen, J.: Privacy preserving collaborative computing: heterogeneous privacy guarantee and efficient incentive mechanism. IEEE Trans. Signal Process. 67(1), 221–233 (2018)
Wang, Y.: Privacy-preserving average consensus via state decomposition. IEEE Trans. Autom. Control (2019)
Wyner, A.D.: The wire-tap channel. Bell Syst. Tech. J. 54(8), 1355–1387 (1975)
Yin, T., Lv, Y., Yu, W.: Accurate privacy preserving average consensus. IEEE Trans. Circuits Syst. II: Express Briefs (2019)
Zhou, H., Yang, W., Yang, C.: Privacy preserving consensus under interception attacks. In: 2017 36th Chinese Control Conference (CCC), pp. 8485–8490. IEEE (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Bouchra Pilet, A., Frey, D., Taiani, F. (2019). Robust Privacy-Preserving Gossip Averaging. In: Ghaffari, M., Nesterenko, M., Tixeuil, S., Tucci, S., Yamauchi, Y. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2019. Lecture Notes in Computer Science(), vol 11914. Springer, Cham. https://doi.org/10.1007/978-3-030-34992-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-34992-9_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-34991-2
Online ISBN: 978-3-030-34992-9
eBook Packages: Computer ScienceComputer Science (R0)