Abstract
We present SIGmA (SAT sImplification on GPU Architectures), a preprocessor to accelerate SAT solving that runs on NVIDIA GPUs. We discuss the tool, focussing on its full functionality and how it can be used in combination with state-of-the-art SAT solvers. SIGmA performs various types of simplification, such as variable elimination, subsumption elimination, blocked clause elimination and hidden redundancy elimination. We study the effectiveness of our tool when applied prior to SAT solving. Overall, for our large benchmark set of problems, SIGmA enables MiniSat and Lingeling to solve many problems in less time compared to applying the SatElite preprocessor.
This work is part of the GEARS project with project number TOP2.16.044, which is (partly) financed by the Netherlands Organisation for Scientific Research (NWO).
We gratefully acknowledge the support of NVIDIA Corporation with the donation of the GeForce Titan Xp’s used for this research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
Tables with all the data are available at http://gears.win.tue.nl/software.
References
Bal, H., et al.: A medium-scale distributed system for computer science research: infrastructure for the long term. IEEE Comput. 49(5), 54–63 (2016)
Biere, A.: Lingeling, plingeling and treengeling entering the SAT competition 2013. In: Proceedings of SAT Competition, pp. 51–52 (2013)
Bošnački, D., Edelkamp, S., Sulewski, D., Wijs, A.: GPU-PRISM: an extension of PRISM for general purpose graphics processing units. In: PDMC, pp. 17–19. IEEE Computer Society Press (2010)
Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005). https://doi.org/10.1007/11499107_5
Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24605-3_37
Gebhardt, K., Manthey, N.: Parallel variable elimination on CNF formulas. In: Timm, I.J., Thimm, M. (eds.) KI 2013. LNCS (LNAI), vol. 8077, pp. 61–73. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40942-4_6
Jin, H., Somenzi, F.: An incremental algorithm to check satisfiability for bounded model checking. ENTCS 119(2), 51–65 (2005)
Kullmann, O.: On a generalization of extended resolution. Discrete Appl. Math. 97, 149–176 (1999)
Osama, M., Gaber, L., Hussein, A.I., Mahmoud, H.: An efficient SAT-based test generation algorithm with GPU accelerator. J. Electron. Test. 34(5), 511–527 (2018)
Osama, M., Wijs, A.: Parallel SAT simplification on GPU architectures. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 21–40. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-0_2
Subbarayan, S., Pradhan, D.K.: NiVER: non-increasing variable elimination resolution for preprocessing SAT instances. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 276–291. Springer, Heidelberg (2005). https://doi.org/10.1007/11527695_22
Wijs, A.: GPU accelerated strong and branching bisimilarity checking. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 368–383. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_29
Wijs, A.: BFS-based model checking of linear-time properties with an application on GPUs. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 472–493. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6_26
Wijs, A., Bošnački, D.: Many-core on-the-fly model checking of safety properties using GPUs. Int. J. Softw. Tools Technol. Transfer 18(2), 169–185 (2016)
Wijs, A., Neele, T., Bošnački, D.: GPUexplore 2.0: unleashing GPU explicit-state model checking. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 694–701. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48989-6_42
Youness, H., Ibraheim, A., Moness, M., Osama, M.: An efficient implementation of ant colony optimization on GPU for the satisfiability problem. In: PDP, pp. 230–235. IEEE (2015)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Osama, M., Wijs, A. (2019). SIGmA: GPU Accelerated Simplification of SAT Formulas. In: Ahrendt, W., Tapia Tarifa, S. (eds) Integrated Formal Methods. IFM 2019. Lecture Notes in Computer Science(), vol 11918. Springer, Cham. https://doi.org/10.1007/978-3-030-34968-4_29
Download citation
DOI: https://doi.org/10.1007/978-3-030-34968-4_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-34967-7
Online ISBN: 978-3-030-34968-4
eBook Packages: Computer ScienceComputer Science (R0)