Abstract
The SMT-LIB language and the B language are both based on predicate logic and have some common operators. However, B supports data types not available in SMT-LIB and vice versa. In this article we suggest a straightforward translation from SMT-LIB to B. Using this translation, SMT-LIB can be analyzed by tools developed for the B method. We show how Atelier B can be used for automatic and interactive proof of SMT-LIB problems. Furthermore, we incorporated our translation into the model checker ProB and applied it to several benchmarks taken from the SMT-LIB repository. In contrast to most SMT solvers, ProB relies on finite domain constraint propagation, with support for infinite domains by keeping track of the exhaustiveness of domain variable enumerations. Our goal was to see whether this kind of approach is beneficial for SMT solving.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The CLP(FD) library employed by ProB may generate overflows, which ProB tries to catch and provide alternative treatment for. In case this is not possible, ProB reports “unknown”.
- 2.
More precisely, the definition of division in B [1] is \(n/m = \min (\{x ~|~ x \in \mathbb {N} \wedge n < m * succ(x)\})\).
- 3.
We may improve our translation to remedy this, but our assumption is that most SMT-LIB examples are well-defined according to B.
- 4.
At commit a6bd02c5c442b806b5e01fed40ab9d1017e42bc3, see https://github.com/CVC4/CVC4/blob/a6bd02c5c442b806b5e01fed40ab9d1017e42bc3/src/theory/arith/theory_arith_private.cpp#L1231 for the full file and context.
- 5.
The development version of ProB is available at http://www3.hhu.de/stups/prob/Download.
- 6.
References
Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press, New York (1996)
Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge University Press, New York (2010)
Abrial, J.-R., Butler, M., Hallerstede, S., Voisin, L.: An open extensible tool environment for event-B. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 588–605. Springer, Heidelberg (2006). https://doi.org/10.1007/11901433_32
Abrial, J.-R., Mussat, L.: On using conditional definitions in formal theories. In: Bert, D., Bowen, J.P., Henson, M.C., Robinson, K. (eds.) ZB 2002. LNCS, vol. 2272, pp. 242–269. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45648-1_13
Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_14
Barrett, C., de Moura, L., Stump, A.: SMT-COMP: satisfiability modulo theories competition. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 20–23. Springer, Heidelberg (2005). https://doi.org/10.1007/11513988_4
Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB standard: version 2.5. Tech. rep., Department of Computer Science, The University of Iowa (2015). www.SMT-LIB.org
Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending sledgehammer with SMT solvers. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 116–130. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22438-6_11
Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14052-5_11
Boute, R.T.: The Euclidean definition of the functions div and mod. ACM Trans. Program. Lang. Syst. 14(2), 127–144 (1992)
Bouton, T., Caminha B. de Oliveira, D., Déharbe, D., Fontaine, P.: veriT: an open, trustable and efficient SMT-solver. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 151–156. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02959-2_12
Brummayer, R., Biere, A.: Boolector: an efficient SMT solver for bit-vectors and arrays. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 174–177. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00768-2_16
Cantone, D., Zarba, C.G.: A new fast tableau-based decision procedure for an unquantified fragment of set theory. In: Caferra, R., Salzer, G. (eds.) FTP 1998. LNCS (LNAI), vol. 1761, pp. 126–136. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46508-1_8
Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint solver. In: Glaser, H., Hartel, P., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292, pp. 191–206. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0033845
Bouton, T., Caminha B. de Oliveira, D., Déharbe, D., Fontaine, P.: veriT: an open, trustable and efficient SMT-solver. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 151–156. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02959-2_12
ClearSy: Atelier B 4.1 Release Notes. Aix-en-Provence, France (2009). http://www.atelierb.eu/
Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7(3), 201–215 (1960)
de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24
Déharbe, D., Fontaine, P., Guyot, Y., Voisin, L.: SMT solvers for Rodin. In: Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Riccobene, E. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 194–207. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30885-7_14
Delahaye, D., Dubois, C., Marché, C., Mentré, D.: The BWare project: building a proof platform for the automated verification of B proof obligations. In: Ait Ameur, Y., Schewe, K.D. (eds.) ABZ 2014. LNCS, vol. 8477, pp. 290–293. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43652-3_26
Duck, G.J.: SMCHR: satisfiability modulo constraint handling rules. CoRR, abs/1210.5307 (2012)
Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_49
Déharbe, D., Fontaine, P., Guyot, Y., Voisin, L.: Integrating SMT solvers in Rodin. Sci. Comput. Program. 94(2), 130–143 (2014)
Fröhlich, A., Kovásznai, G., Biere, A.: Efficiently solving bit-vector problems using model checkers. In: Proceedings SMT Workshop, pp. 6–15 (2013)
Frühwirth, T.: Theory and practice of constraint handling rules. J. Logic Program. 37(1–3), 95–138 (1998)
Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): fast decision procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 175–188. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-9_14
Hansen, D., Leuschel, M.: Translating TLA\(^+\) to B for validation with ProB. In: Derrick, J., Gnesi, S., Latella, D., Treharne, H. (eds.) IFM 2012. LNCS, vol. 7321, pp. 24–38. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30729-4_3
Middeldorp, A., Sato, T. (eds.): FLOPS 1999. LNCS, vol. 1722. Springer, Heidelberg (1999). https://doi.org/10.1007/10705424
Howe, J.M., King, A.: A pearl on SAT and SMT solving in prolog. Theor. Comput. Sci. 435, 43–55 (2012)
Knuth, D.E.: The art of computer programming, volume 1: Fundamental Algorithms, vol. 1. Addison Wesley Longman Publishing Co., Inc., Redwood City (1997)
Kotelnikov, E., Kovács, L., Reger, G., Voronkov, A.: The vampire and the FOOL. In: Proceedings CPP, CPP 2016, pp. 37–48. ACM (2016)
Kotelnikov, E., Kovács, L., Voronkov, A.: A first class boolean sort in first-order theorem proving and TPTP. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015. LNCS (LNAI), vol. 9150, pp. 71–86. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20615-8_5
Krings, S., Leuschel, M.: SMT solvers for validation of B and event-B models. In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 361–375. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33693-0_23
Leuschel, M., Bendisposto, J., Dobrikov, I., Krings, S., Plagge, D.: From animation to data validation: the prob constraint solver 10 years on. In: Boulanger, J.-L. (ed.) Formal Methods Applied to Complex Systems: Implementation of the B Method, pp. 427–446. Wiley ISTE (2014)
Marques-Silva, J., Sakallah, K.: GRASP: a search algorithm for propositional satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)
Matos, P.J., Fischer, B., Marques-Silva, J.: A lazy unbounded model checker for Event-B. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 485–503. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10373-5_25
Reger, G., Suda, M., Voronkov, A.: Instantiation and pretending to be an SMT solver with vampire. In: Proceedings SMT Workshop (2012)
Schneider, D., Leuschel, M., Witt, T.: Model-based problem solving for university timetable validation and improvement. In: Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 487–495. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19249-9_30
Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: a cross-community infrastructure for logic solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 367–373. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-6_28
Weissenbacher, G., Kröning, D., Rümmer, P.: A proposal for a theory of finite sets, lists, and maps for the SMT-Lib standard. In: Proceedings SMT Workshop (2009)
Witulski, J., Leuschel, M.: Checking computations of formal method tools - a secondary toolchain for ProB. In: Proceedings F-IDE, vol. 149, EPTCS. Electronic Proceedings in Theoretical Computer Science (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Krings, S., Leuschel, M. (2019). Embedding SMT-LIB into B for Interactive Proof and Constraint Solving. In: Ahrendt, W., Tapia Tarifa, S. (eds) Integrated Formal Methods. IFM 2019. Lecture Notes in Computer Science(), vol 11918. Springer, Cham. https://doi.org/10.1007/978-3-030-34968-4_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-34968-4_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-34967-7
Online ISBN: 978-3-030-34968-4
eBook Packages: Computer ScienceComputer Science (R0)