Non-Committing Encryption with Quasi-Optimal Ciphertext-Rate Based on the DDH Problem | SpringerLink
Skip to main content

Non-Committing Encryption with Quasi-Optimal Ciphertext-Rate Based on the DDH Problem

  • Conference paper
  • First Online:
Advances in Cryptology – ASIACRYPT 2019 (ASIACRYPT 2019)

Abstract

Non-committing encryption (NCE) was introduced by Canetti et al. (STOC ’96). Informally, an encryption scheme is non-committing if it can generate a dummy ciphertext that is indistinguishable from a real one. The dummy ciphertext can be opened to any message later by producing a secret key and an encryption random coin which “explain” the ciphertext as an encryption of the message. Canetti et al. showed that NCE is a central tool to achieve multi-party computation protocols secure in the adaptive setting. An important measure of the efficiently of NCE is the ciphertext rate, that is the ciphertext length divided by the message length, and previous works studying NCE have focused on constructing NCE schemes with better ciphertext rates.

We propose an NCE scheme satisfying the ciphertext rate based on the decisional Diffie-Hellman (DDH) problem, where is the security parameter. The proposed construction achieves the best ciphertext rate among existing constructions proposed in the plain model, that is, the model without using common reference strings. Previously to our work, an NCE scheme with the best ciphertext rate based on the DDH problem was the one proposed by Choi et al. (ASIACRYPT ’09) that has ciphertext rate . Our construction of NCE is similar in spirit to that of the recent construction of the trapdoor function proposed by Garg and Hajiabadi (CRYPTO ’18).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Their technique is further extended by Garg, Gay, and Hajiabadi [13] and Döttling, Garg, Ishai, Malavolta, Mour, and Ostrovsky [12].

  2. 2.

    Usually, a chameleon hash function is required to be collision resistant, but we omit it since it is implied by the security of chameleon encryption defined later.

  3. 3.

    and do not use for such that , but for simplicity, we generate whole .

References

  1. Beaver, D.: Plug and play encryption. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 75–89. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052228

    Chapter  Google Scholar 

  2. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 273–289. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_17

    Chapter  Google Scholar 

  3. Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous IBE, leakage resilience and circular security from new assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 535–564. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_20

    Chapter  Google Scholar 

  4. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party computation. In: 28th ACM STOC, pp. 639–648 (1996)

    Google Scholar 

  5. Canetti, R., Poburinnaya, O., Raykova, M.: Optimal-rate non-committing encryption. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 212–241. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_8

    Chapter  Google Scholar 

  6. Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou, A.: Laconic oblivious transfer and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 33–65. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_2

    Chapter  Google Scholar 

  7. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Improved non-committing encryption with applications to adaptively secure protocols. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 287–302. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_17

    Chapter  Google Scholar 

  8. Damgård, I., Nielsen, J.B.: Improved non-committing encryption schemes based on a general complexity assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 432–450. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_27

    Chapter  Google Scholar 

  9. Döttling, N., Garg, S.: From selective IBE to full IBE and selective HIBE. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 372–408. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_13

    Chapter  Google Scholar 

  10. Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assumption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 537–569. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_18

    Chapter  Google Scholar 

  11. Döttling, N., Garg, S., Hajiabadi, M., Masny, D.: New constructions of identity-based and key-dependent message secure encryption schemes. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 3–31. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76578-5_1

    Chapter  MATH  Google Scholar 

  12. Döttling, N., Garg, S., Ishai, Y., Malavolta, G., Mour, T., Ostrovsky, R.: Trapdoor hash functions and their applications. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 3–32. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_1

    Chapter  Google Scholar 

  13. Garg, S., Gay, R., Hajiabadi, M.: New techniques for efficient trapdoor functions and applications. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III. LNCS, vol. 11478, pp. 33–63. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_2

    Chapter  Google Scholar 

  14. Garg, S., Hajiabadi, M.: Trapdoor functions from the computational Diffie-Hellman assumption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 362–391. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_13

    Chapter  Google Scholar 

  15. Garg, S., Ostrovsky, R., Srinivasan, A.: Adaptive garbled RAM from laconic oblivious transfer. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 515–544. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_18

    Chapter  Google Scholar 

  16. Garg, S., Srinivasan, A.: Adaptively secure garbling with near optimal online complexity. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 535–565. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_18

    Chapter  Google Scholar 

  17. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_16

    Chapter  Google Scholar 

  18. Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge protocols. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 408–423. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055744

    Chapter  Google Scholar 

  19. Hemenway, B., Ostrovsky, R., Richelson, S., Rosen, A.: Adaptive security with quasi-optimal rate. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part I. LNCS, vol. 9562, pp. 525–541. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9_22

    Chapter  Google Scholar 

  20. Hemenway, B., Ostrovsky, R., Rosen, A.: Non-committing encryption from \(\phi \)-hiding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014, pp. 591–608. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6_24

    Chapter  Google Scholar 

  21. Tao, T., Vu, V.: On the singularity probability of random Bernoulli matrices. J. Am. Math. Soc. 20(3), 603–628 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

A part of this work was supported by NTT Secure Platform Laboratories, JST OPERA JPMJOP1612, JST CREST JPMJCR14D6, JSPS KAKENHI JP16H01705, JP17H01695, JP19J22363.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Yoshida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yoshida, Y., Kitagawa, F., Tanaka, K. (2019). Non-Committing Encryption with Quasi-Optimal Ciphertext-Rate Based on the DDH Problem. In: Galbraith, S., Moriai, S. (eds) Advances in Cryptology – ASIACRYPT 2019. ASIACRYPT 2019. Lecture Notes in Computer Science(), vol 11923. Springer, Cham. https://doi.org/10.1007/978-3-030-34618-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34618-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34617-1

  • Online ISBN: 978-3-030-34618-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics