Abstract
We present the first machine-checked formalization of Jaffe and Ehrenfeucht, Parikh and Rozenberg’s (EPR) pumping lemmas in the Coq proof assistant. We formulate regularity in terms of finite derivatives, and prove that both Jaffe’s pumping property and EPR’s block pumping property precisely characterize regularity. We illuminate EPR’s classical proof that the block cancellation property implies regularity, and discover that—as best we can tell—their proof relies on the Axiom of Choice. We provide a new proof which eliminates the use of Choice. We explicitly construct a function which computes block cancelable languages from well-formed short languages.
Aquinas Hobor is supported in part by Yale-NUS College grant R-607-265-322-121. Elaine Li is supported in part by Runtime Verification, Inc. Frank Stephan is supported in part by MOE AcRF Tier 2 grant MOE2016-T2-1-019/R146-000-234-112. Authors are ordered alphabetically.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In our Coq development, we define block_cancellable_matching_with as the two-sided cancellation property, i.e. both L and L’s complement satisfy it, while block_cancellable_with refers to the one-sided cancellation (pumping) property. The same applies for the block pumping property.
- 2.
We postpone discussion of why this condition works until Sect. 5.3.
References
Almeida, J.C.B., Moreira, N., Perira, D., de Sousa, S.M.: Partial derivative automata formalized in Coq. In: The 15th International Conference on Implementation and Application of Automata, pp. 10:59–10:68 (2010)
Banach, S., Tarski, A.: Sur la décomposition de ensebles de points en parties respectivement congruentes. Fundam. Math. 6, 244–277 (1924)
Berardi, S., Bezem, M., Coquand, T.: On the computational content of the axiom of choice. J. Symbolic Logic 63(2), 600–622 (1998)
Chak, C.H., Freivalds, R., Stephan, F., Yik, H.T.W.: On block pumpable languages. Theore. Comput. Sci. (2016)
Chomsky, N.: On certain formal properties of grammars. Inf. Control 2(2), 137–167 (1959)
Chomsky, N., Schützenberger, M.P.: The algebraic theory of context free languages. Comput. Program. Formal Lang. (1963)
The Coq Development Team. The Coq Proof Assistant Reference Manual – Version8.10.0 (2019). http://coq.inria.fr
Coquand, T., Huet, G.: The calculus of constructions. Inf. Comput. 76(2–3), 95–120 (1988)
Coquand, T., Siles, V.: A decision procedure for regular expression equivalence in type theory. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 119–134. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25379-9_11
Constable, R., Jackson, P.B., Naumov, P., Uribe, J.: Constructively formalizing automata theory. In: Proof, Language and Interaction (1998)
Diaconescu, R.: Axiom of choice and complementation. Proc. Am. Math. Soc. 51, 176–178 (1975)
Doczkal, C., Kaiser, J.-O., Smolka, G.: A constructive theory of regular languages in Coq. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 82–97. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03545-1_6
Doczkal, C., Smolka, G.: Regular language representations in the constructive type theory of coq. J. Autom. Reasoning (2018)
Ehrenfeucht, A., Parikh, R., Rozenberg, G.: Pumping lemmas for regular sets. SIAM J. Comput. 10, 536–541 (1981)
Filliatre, J.-C.: Finite automata theory in Coq: a constructive proof of Kleene’s theorem. Ecole Normale Supérieure de Lyon Research Report (1997)
Van Heijenoort, J.: From Frege to Godel: A Source Book in Mathematical Logic, 1879–1931. Harvard University Press (1967)
Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation, 3rd edn. Addison Wesley, Boston (2007)
Jaffe, J.: A necessary and sufficient pumping lemma for regular languages. ACM SIGACT News 10(2), 48–49 (1978)
Krauss, A., Nipkow, T.: Proof pearl: regular expression equivalence and relation algebra. J. Autom. Reasoning 49(1), 95–106 (2012)
Kreitz, C.: Constructive automata theory implemented with the Nuprl proof development system. Computer Science Technical Reports (1986)
Li, E.: Formalizing block pumpable language theory. Capstone Final Report for BSc. (Honours) in Mathematical, Computational and Statistical Sciences, Yale-NUS College (2019)
Martin-Löf, P.: An intuitionistic theory of types. Twenty-Five Years of Constructive Type Theory (1998)
Nerode, A.: Linear automaton transformations. Proc. Am. Math. Soc. 9(4), 541–544 (1958)
Nijholt, A.: An annotated bibliography of pumping. Bull. EATCS 17, 34–53 (1982)
Nipkow, T., Traytel, D.: Unified decision procedures for regular expression equivalence. Interact. Theorem Proving, 450–466 (2014)
Ramos, M.V.M., de Queiroz, R.J.G.B., Moreira, N., Almeida, J.C.B.: On the formalization of some results of context-free language theory. In: Väänänen, J., Hirvonen, Å., de Queiroz, R. (eds.) WoLLIC 2016. LNCS, vol. 9803, pp. 338–357. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52921-8_21
Paulin-Mohring, C.: Introduction to the calculus of inductive constructions. In: Studies in Logic (Mathematical logic and foundations) (2015). 978-1-84890-166-7
Ramsey, F.P.: On a problem of formal logic. Proc. London Math. Soc. s2(30), 264–286 (1930)
Sommerhalder, R.: Classes of languages proof against regular pumping. RAIRO Informatique théorique 14, 169–180 (1980)
Turing, A.M.: On computable numbers, with an application to the entscheidungsproblem: a correction. Proc. London Math. Soc. 43(6), 544–546 (1937)
Varricchio, S.: A pumping condition for regular sets. SIAM J. Comput. 26(3), 764–771 (1997)
Wu, C., Zhang, X., Urban, C.: A formalisation of the myhill-nerode theorem based on regular expressions (proof pearl). In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 341–356. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22863-6_25
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Hobor, A., Li, E., Stephan, F. (2019). Pumping, with or Without Choice. In: Lin, A. (eds) Programming Languages and Systems. APLAS 2019. Lecture Notes in Computer Science(), vol 11893. Springer, Cham. https://doi.org/10.1007/978-3-030-34175-6_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-34175-6_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-34174-9
Online ISBN: 978-3-030-34175-6
eBook Packages: Computer ScienceComputer Science (R0)