Abstract
As the arms race between the new kinds of attacks and new ways to detect and prevent those attacks continues, better and better algorithms have to be developed to stop the malicious agents dead in their tracks. In this paper, we evaluate the use of one of the youngest additions to the deep learning architectures, the Gated Recurrent Unit for its feasibility in the intrusion detection domain. The network and its performance is evaluated with the use of a well-established benchmark dataset, called NSL-KDD. The experiments, with the accuracy surpassing the average of 98%, proves that GRU is a viable architecture for intrusion detection, achieving results comparable to other state-of-the-art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
IBM X-Force Report (2019). https://newsroom.ibm.com/2019-02-26-IBM-X-Force-Report-Ransomware-Doesnt-Pay-in-2018-as-Cybercriminals-Turn-to-Cryptojacking-for-Profit
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). Software available from tensorflow.org. https://www.tensorflow.org/
Aggarwal, C.C.: Neural Networks and Deep Learning. Springer, Cham (2018)
Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)
Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras
Goyal, P., Pandey, S., Jain, K.: Unfolding recurrent neural networks, pp. 119–168. Apress, Berkeley (2018). https://doi.org/10.1007/978-1-4842-3685-7_3
Hao, Y., Sheng, Y., Wang, J.: Variant gated recurrent units with encoders to preprocess packets for payload-aware intrusion detection. IEEE Access 7, 49985–49998 (2019). https://doi.org/10.1109/ACCESS.2019.2910860
Kim, K., Aminanto, M.E., Tanuwidjaja, H.C.: Network Intrusion Detection using Deep Learning, A Feature Learning Approach. Springer, Singapore (2018)
Le, T., Kang, H., Kim, H.: The impact of PCA-scale improving GRU performance for intrusion detection. In: 2019 International Conference on Platform Technology and Service (PlatCon), pp. 1–6, January 2019. https://doi.org/10.1109/PlatCon.2019.8668960
Maimon, O., Rokach, L.: Data Mining and Knowledge Discovery Handbook, 2nd edn. Springer, Heidelberg (2010)
Skansi, S.: Recurrent neural networks, pp. 135–152, January 2018. https://doi.org/10.1007/978-3-319-73004-2_7
Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.: A detailed analysis of the KDD CUP 99 data set. In: IEEE Symposium on Computational Intelligence for Security and Defense Applications, CISDA, vol. 2, July 2009. https://doi.org/10.1109/CISDA.2009.5356528
Xu, C., Shen, J., Du, X., Zhang, F.: An intrusion detection system using a deep neural network with gated recurrent units. IEEE Access 6, 48697–48707 (2018). https://doi.org/10.1109/ACCESS.2018.2867564
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Pawlicki, M., Marchewka, A., Choraś, M., Kozik, R. (2020). Gated Recurrent Units for Intrusion Detection. In: Choraś, M., Choraś, R. (eds) Image Processing and Communications. IP&C 2019. Advances in Intelligent Systems and Computing, vol 1062. Springer, Cham. https://doi.org/10.1007/978-3-030-31254-1_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-31254-1_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-31253-4
Online ISBN: 978-3-030-31254-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)