Gated Recurrent Units for Intrusion Detection | SpringerLink
Skip to main content

Gated Recurrent Units for Intrusion Detection

  • Conference paper
  • First Online:
Image Processing and Communications (IP&C 2019)

Abstract

As the arms race between the new kinds of attacks and new ways to detect and prevent those attacks continues, better and better algorithms have to be developed to stop the malicious agents dead in their tracks. In this paper, we evaluate the use of one of the youngest additions to the deep learning architectures, the Gated Recurrent Unit for its feasibility in the intrusion detection domain. The network and its performance is evaluated with the use of a well-established benchmark dataset, called NSL-KDD. The experiments, with the accuracy surpassing the average of 98%, proves that GRU is a viable architecture for intrusion detection, achieving results comparable to other state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. IBM X-Force Report (2019). https://newsroom.ibm.com/2019-02-26-IBM-X-Force-Report-Ransomware-Doesnt-Pay-in-2018-as-Cybercriminals-Turn-to-Cryptojacking-for-Profit

  2. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). Software available from tensorflow.org. https://www.tensorflow.org/

  3. Aggarwal, C.C.: Neural Networks and Deep Learning. Springer, Cham (2018)

    Book  Google Scholar 

  4. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  5. Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras

  6. Goyal, P., Pandey, S., Jain, K.: Unfolding recurrent neural networks, pp. 119–168. Apress, Berkeley (2018). https://doi.org/10.1007/978-1-4842-3685-7_3

    Chapter  Google Scholar 

  7. Hao, Y., Sheng, Y., Wang, J.: Variant gated recurrent units with encoders to preprocess packets for payload-aware intrusion detection. IEEE Access 7, 49985–49998 (2019). https://doi.org/10.1109/ACCESS.2019.2910860

    Article  Google Scholar 

  8. Kim, K., Aminanto, M.E., Tanuwidjaja, H.C.: Network Intrusion Detection using Deep Learning, A Feature Learning Approach. Springer, Singapore (2018)

    Book  Google Scholar 

  9. Le, T., Kang, H., Kim, H.: The impact of PCA-scale improving GRU performance for intrusion detection. In: 2019 International Conference on Platform Technology and Service (PlatCon), pp. 1–6, January 2019. https://doi.org/10.1109/PlatCon.2019.8668960

  10. Maimon, O., Rokach, L.: Data Mining and Knowledge Discovery Handbook, 2nd edn. Springer, Heidelberg (2010)

    Book  Google Scholar 

  11. Skansi, S.: Recurrent neural networks, pp. 135–152, January 2018. https://doi.org/10.1007/978-3-319-73004-2_7

    Google Scholar 

  12. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.: A detailed analysis of the KDD CUP 99 data set. In: IEEE Symposium on Computational Intelligence for Security and Defense Applications, CISDA, vol. 2, July 2009. https://doi.org/10.1109/CISDA.2009.5356528

  13. Xu, C., Shen, J., Du, X., Zhang, F.: An intrusion detection system using a deep neural network with gated recurrent units. IEEE Access 6, 48697–48707 (2018). https://doi.org/10.1109/ACCESS.2018.2867564

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Pawlicki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pawlicki, M., Marchewka, A., Choraś, M., Kozik, R. (2020). Gated Recurrent Units for Intrusion Detection. In: Choraś, M., Choraś, R. (eds) Image Processing and Communications. IP&C 2019. Advances in Intelligent Systems and Computing, vol 1062. Springer, Cham. https://doi.org/10.1007/978-3-030-31254-1_18

Download citation

Publish with us

Policies and ethics