Abstract
The item neighborhood-based graph kernel (INGK) has recently been proposed to compute item similarity on the Linked Open Data (LOD) graph and then produce top-N recommendations (the similarity measure is abbreviated as INGK-LOD). This paper explores how to use the graph kernel to compute item similarity on the basis of user-item ratings. We transform the user-item ratings matrix into an undirected graph called a user-item ratings graph, and define the graph kernel based on the graph, which can be used to compute item similarity (the similarity measure is abbreviated as INGK-UIR). We applied INGK-UIR, INGK-LOD and two baseline similarity measures, Cosine and Pearson correlation coefficient, to top-N recommendation, and conducted experimental evaluation of recommendation accuracy using the MovieLens 1M benchmark dataset. The results show that our INGK-UIR significantly outperforms INGK-LOD and the two baseline measures in terms of precision and recall.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Heath, T.: Linked data - welcome to the data network. IEEE Internet Comput. 15(6), 70–73 (2011)
Di Noia, T., Tomeo, P.: Recommender systems based on linked open data. In: Alhajj, R., Rokne, J. (eds.) Encyclopedia of Social Network Analysis and Mining, 2nd edn, pp. 2064–2080. Springer, New York (2018). https://doi.org/10.1007/978-1-4939-7131-2_110165
Xu, W., Xu, Z., Ye, L.: Computing user similarity by combining item ratings and background knowledge from linked open data. In: Meng, X., Li, R., Wang, K., Niu, B., Wang, X., Zhao, G. (eds.) WISA 2018. LNCS, vol. 11242, pp. 467–478. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02934-0_43
Kriege, N.M., Johansson, F.D., Morris, C.: A survey on graph kernels. CoRR abs/1903.11835 (2019). https://arxiv.org/pdf/1903.11835
Fouss, F., Françoisse, K., Yen, L., Pirotte, A., Saerens, M.: An experimental investigation of kernels on graphs for collaborative recommendation and semisupervised classification. Neural Netw. 31, 53–72 (2012)
Ostuni, V.C., Di Noia, T., Mirizzi, R., Di Sciascio, E.: A linked data recommender system using a neighborhood-based graph kernel. In: Hepp, M., Hoffner, Y. (eds.) EC-Web 2014. LNBIP, vol. 188, pp. 89–100. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10491-1_10
Harper, F.M., Konstan, J.A.: The MovieLens datasets: history and context. ACM Trans. Interact. Intell. Syst. (TiiS) 5(4), 19:1–19:19 (2016)
Aggarwal, C.C.: Neighborhood-based collaborative filtering. In: Recommender Systems: The Textbook, pp. 29–70. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29659-3_2
Aggarwal, C.C.: An introduction to recommender systems. In: Recommender Systems: The Textbook, pp. 1–28. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29659-3_1
Oramas, S., Ostuni, V.C., Di Noia, T., Serra, X., Di Sciascio, E.: Sound and music recommendation with knowledge graphs. ACM Trans. Intell. Syst. Technol. (TIST) 8(2) (2017). Article no. 21
Ho, C.H., Lin, C.J.: Large-scale linear support vector regression. J. Mach. Learn. Res. 13, 3323–3348 (2012)
Aggarwal, C.C.: Evaluating recommender systems. In: Recommender Systems: The Textbook, pp. 225–254. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29659-3_7
Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3) (2011). Article no. 27
Lehmann, J., Isele, R., Jakob, M., et al.: DBpedia - a large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web 6(2), 167–195 (2015)
Di Noia, T., Ostuni, V.C., Tomeo, P., Di Sciascio, E.: SPRank: semantic path-based ranking for top-n recommendations using linked open data. ACM Trans. Intell. Syst. Technol. (TIST) 8(1), 9:1–9:34 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Xu, W., Xu, Z., Zhao, B. (2019). A Graph Kernel Based Item Similarity Measure for Top-N Recommendation. In: Ni, W., Wang, X., Song, W., Li, Y. (eds) Web Information Systems and Applications. WISA 2019. Lecture Notes in Computer Science(), vol 11817. Springer, Cham. https://doi.org/10.1007/978-3-030-30952-7_69
Download citation
DOI: https://doi.org/10.1007/978-3-030-30952-7_69
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-30951-0
Online ISBN: 978-3-030-30952-7
eBook Packages: Computer ScienceComputer Science (R0)