A Graph Kernel Based Item Similarity Measure for Top-N Recommendation | SpringerLink
Skip to main content

A Graph Kernel Based Item Similarity Measure for Top-N Recommendation

  • Conference paper
  • First Online:
Web Information Systems and Applications (WISA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11817))

Included in the following conference series:

  • 2129 Accesses

Abstract

The item neighborhood-based graph kernel (INGK) has recently been proposed to compute item similarity on the Linked Open Data (LOD) graph and then produce top-N recommendations (the similarity measure is abbreviated as INGK-LOD). This paper explores how to use the graph kernel to compute item similarity on the basis of user-item ratings. We transform the user-item ratings matrix into an undirected graph called a user-item ratings graph, and define the graph kernel based on the graph, which can be used to compute item similarity (the similarity measure is abbreviated as INGK-UIR). We applied INGK-UIR, INGK-LOD and two baseline similarity measures, Cosine and Pearson correlation coefficient, to top-N recommendation, and conducted experimental evaluation of recommendation accuracy using the MovieLens 1M benchmark dataset. The results show that our INGK-UIR significantly outperforms INGK-LOD and the two baseline measures in terms of precision and recall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Heath, T.: Linked data - welcome to the data network. IEEE Internet Comput. 15(6), 70–73 (2011)

    Article  Google Scholar 

  2. Di Noia, T., Tomeo, P.: Recommender systems based on linked open data. In: Alhajj, R., Rokne, J. (eds.) Encyclopedia of Social Network Analysis and Mining, 2nd edn, pp. 2064–2080. Springer, New York (2018). https://doi.org/10.1007/978-1-4939-7131-2_110165

    Chapter  Google Scholar 

  3. Xu, W., Xu, Z., Ye, L.: Computing user similarity by combining item ratings and background knowledge from linked open data. In: Meng, X., Li, R., Wang, K., Niu, B., Wang, X., Zhao, G. (eds.) WISA 2018. LNCS, vol. 11242, pp. 467–478. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02934-0_43

    Chapter  Google Scholar 

  4. Kriege, N.M., Johansson, F.D., Morris, C.: A survey on graph kernels. CoRR abs/1903.11835 (2019). https://arxiv.org/pdf/1903.11835

  5. Fouss, F., Françoisse, K., Yen, L., Pirotte, A., Saerens, M.: An experimental investigation of kernels on graphs for collaborative recommendation and semisupervised classification. Neural Netw. 31, 53–72 (2012)

    Article  Google Scholar 

  6. Ostuni, V.C., Di Noia, T., Mirizzi, R., Di Sciascio, E.: A linked data recommender system using a neighborhood-based graph kernel. In: Hepp, M., Hoffner, Y. (eds.) EC-Web 2014. LNBIP, vol. 188, pp. 89–100. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10491-1_10

    Chapter  Google Scholar 

  7. Harper, F.M., Konstan, J.A.: The MovieLens datasets: history and context. ACM Trans. Interact. Intell. Syst. (TiiS) 5(4), 19:1–19:19 (2016)

    Google Scholar 

  8. Aggarwal, C.C.: Neighborhood-based collaborative filtering. In: Recommender Systems: The Textbook, pp. 29–70. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29659-3_2

    Chapter  Google Scholar 

  9. Aggarwal, C.C.: An introduction to recommender systems. In: Recommender Systems: The Textbook, pp. 1–28. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29659-3_1

    Google Scholar 

  10. Oramas, S., Ostuni, V.C., Di Noia, T., Serra, X., Di Sciascio, E.: Sound and music recommendation with knowledge graphs. ACM Trans. Intell. Syst. Technol. (TIST) 8(2) (2017). Article no. 21

    Article  Google Scholar 

  11. Ho, C.H., Lin, C.J.: Large-scale linear support vector regression. J. Mach. Learn. Res. 13, 3323–3348 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Aggarwal, C.C.: Evaluating recommender systems. In: Recommender Systems: The Textbook, pp. 225–254. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29659-3_7

    Chapter  Google Scholar 

  13. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3) (2011). Article no. 27

    Article  Google Scholar 

  14. Lehmann, J., Isele, R., Jakob, M., et al.: DBpedia - a large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web 6(2), 167–195 (2015)

    Google Scholar 

  15. Di Noia, T., Ostuni, V.C., Tomeo, P., Di Sciascio, E.: SPRank: semantic path-based ranking for top-n recommendations using linked open data. ACM Trans. Intell. Syst. Technol. (TIST) 8(1), 9:1–9:34 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuoming Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, W., Xu, Z., Zhao, B. (2019). A Graph Kernel Based Item Similarity Measure for Top-N Recommendation. In: Ni, W., Wang, X., Song, W., Li, Y. (eds) Web Information Systems and Applications. WISA 2019. Lecture Notes in Computer Science(), vol 11817. Springer, Cham. https://doi.org/10.1007/978-3-030-30952-7_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30952-7_69

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30951-0

  • Online ISBN: 978-3-030-30952-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics