Abstract
There are challenges and issues when machine learning algorithm needs to access highly sensitive data for the training process. In order to address these issues, several privacy-preserving deep learning techniques, including Secure Multi-Party Computation and Homomorphic Encryption in Neural Network have been developed. There are also several methods to modify the Neural Network, so that it can be used in privacy-preserving environment. However, there is trade-off between privacy and performance among various techniques. In this paper, we discuss state-of-the-art of Privacy-Preserving Deep Learning, evaluate all methods, compare pros and cons of each approach, and address challenges and issues in the field of privacy-preserving by deep learning.
This work was partly supported by Indonesia Endowment Fund for Education (LPDP) and Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIT) (No. 2017-0-00555, Towards Provable-secure Multi-party Authenticated Key Exchange Protocol based on Lattices in a Quantum World).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lazer, D., Pentland, A.S., Adamic, L., Aral, S., Barabasi, A.L.: Life in the network: the coming age of computational social science. Science 323, 721 (2009)
Nasrabadi, N.M.: Pattern recognition and machine learning. J. Electron. Imaging 16, 049901 (2007)
Chen, M., Hao, Y., Hwang, K., Wang, L.: Disease prediction by machine learning over big data from healthcare communities. IEEE Access 5, 8869–8879 (2017)
Zhang, D., Chen, X., Wang, D., Shi, J.: A survey on collaborative deep learning and privacy-preserving. In: IEEE Third International Conference on Data Science in Cyberspace, pp. 652–658 (2018)
Meints, M., Moller, J.: Privacy-preserving data mining: a process centric view from a european perspective (2004)
Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms. Found. Secure Comput. 4(11), 169–180 (1978)
Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16
Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Annual ACM on Symposium on Theory of Computing, pp. 169–178. ACM (2009)
Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (Standard) LWE. SIAM J. Comput. 43(2), 831–871 (2014)
Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_29
Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5
Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) Fully homomorphic encryption without bootstrapping. ACM Transact. Comput. Theory (TOCT) 6(3), 13 (2014)
Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learning with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 630–656. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_31
van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_2
Cheon, J.H., et al.: Batch fully homomorphic encryption over the integers. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 315–335. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_20
Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 554–571. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_31
Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_24
Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_15
Yao, A.C.-C.: How to generate and exchange secrets. In: Foundations of Computer Science 27th Annual Symposium, pp. 162–167. IEEE (1986)
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp. 218–229. ACM (1987)
Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14
Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006_1
Chaudhuri, K., Monteleoni, C., Sarwate, A.D.: Differentially private empirical risk minimization. J. Mach. Learn. Res. 12, 1069–1109 (2011)
Kifer, D., Smith, A., Thakurta, A.: Private convex empirical risk minimization and high-dimensional regression. In: Conference on Learning Theory, pp. 1–25 (2012)
Jagannathan, G., Pillaipakkamnatt, K., Wright, R.N.: A practical differentially private random decision tree classifier. In: IEEE International Conference on Data Mining Workshops 2009, ICDMW 2009, pp. 114–121. IEEE (2009)
LeCun, Y., Haffner, P., Bottou, L., Bengio, Y.: Object recognition with gradient-based learning. Shape, Contour and Grouping in Computer Vision. LNCS, vol. 1681, pp. 319–345. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46805-6_19
Goodfellow, I.: Generative adversarial nets. In: Advances in neural information processing systems, pp. 2672–2680 (2014)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167 (2015)
Hesamifard, E., Takabi, H., Ghasemi, M.: CryptoDL: deep neural networks over encrypted data. arXiv:1711.05189 (2017)
Liu, W., Pan, F., Wang, X.A., Cao, Y., Tang, D.: Privacy-preserving all convolutional net based on homomorphic encryption. In: International Conference on Network-Based Information Systems, pp. 752–762 (2018)
Graepel, T., Lauter, K., Naehrig, M.: ML confidential: machine learning on encrypted data. In: International Conference on Information Security and Cryptology, pp. 1–21 (2012)
Abadi, M., Erlingsson, U., Goodfellow, I.: On the protection of private information in machine learning systems: two recent approches. In: Computer Security Foundations Symposium, pp. 1–6 (2017)
Papernot, N., Abadi, M., Erlingsson, U.: Semi-supervised knowledge transfer for deep learning from private training data. arXiv:1610.05755 (2016)
Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.: Cryptonets: applying neural networks to encrypted data with high throughput and accuracy. In: International Conference on Machine Learning, pp. 201–210 (2016)
Chabanne, H., de Wargny, A., Milgram, J., Morel, C., Prouff, E.: Privacy-preserving classification on deep neural network. IACR Cryptology ePrint Archive (2017)
Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving machine learning, pp. 19–38 (2017)
Rabin, M.O.: How to exchange secrets with oblivious transfer. IACR Cryptology ePrint Archive, p. 187 (2005)
Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
Xue, H., et al.: Distributed large scale privacy-preserving deep mining. In: IEEE Third International Conference on Data Science in Cyberspace, pp. 418–422 (2018)
Rouhani, B., Riazi, M., Koushanfar, F.: DeepSecure: scalable provably-secure deep learning. In: 55th ACM/ESDA/IEEE Design Automation Conference, pp. 1–6 (2018)
Deng, L.: The MNIST database of handwritten digit images for machine learning research. IEEE Signal Process. Mag. 29, 141–142 (2012)
Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network predictions via MiniONN transformations. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 619–631 (2017)
Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: a low latency framework for secure neural network inference. In: 27th USENIX Security Symposium, pp. 1651–1669 (2018)
Sanyal, A., Kusner, M.J., Gascón, A., Kanade, V.: TAPAS: tricks to accelerate (Encrypted) prediction as a service. arXiv preprint, arXiv:1806.03461 (2018)
Bourse, F., Minelli, M., Minihold, M., Paillier, P.: Fast homomorphic evaluation of deep discretized neural networks. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 483–512. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_17
Mohassel, P., Rindal, P.: ABY 3: a mixed protocol framework for machine learning. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 35–52. ACM (2018)
Jiang, X., Kim, M., Lauter, K., Song, Y.: Secure outsourced matrix computation and application to neural networks. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 1209–1222. ACM (2018)
Phong, L.T., Aono, Y., Hayashi, T., Wang, L., Moriai, S.: Privacy-preserving deep learning via additively homomorphic encryption. In: IEEE Transactions on Information Forensics and Security, pp. 1333–1345. IEEE (2018)
Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1310–1321. ACM (2015)
Zhang, Q., Yang, L.T., Castiglione, A., Chen, Z., Li, P.: Secure weighted possibilistic C-means algorithm on cloud for clustering big data. Inf. Sci. 479, 515–525 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Tanuwidjaja, H.C., Choi, R., Kim, K. (2019). A Survey on Deep Learning Techniques for Privacy-Preserving. In: Chen, X., Huang, X., Zhang, J. (eds) Machine Learning for Cyber Security. ML4CS 2019. Lecture Notes in Computer Science(), vol 11806. Springer, Cham. https://doi.org/10.1007/978-3-030-30619-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-30619-9_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-30618-2
Online ISBN: 978-3-030-30619-9
eBook Packages: Computer ScienceComputer Science (R0)