Heuristic Algorithm for Recovering a Physical Structure of Spreadsheet Header | SpringerLink
Skip to main content

Abstract

Tables in electronic documents (spreadsheets) contain large volumes of useful information about different domains. Efficient extraction of data from document tables plays a crucial role in its further usage including analysis and integration. The visual or logical structure of table elements might differ from its physical structure. Such differences cause difficulties for automated table processing and understanding. Automated correction from physical form to visual allows to simplify tables processing operations. In this paper, we propose a heuristic approach for transformation of tables’ header cells. The main goal of the proposed approach is to provide an algorithm and software tool for recovering a physical structure of a spreadsheet header. The proposed approach is illustrated by application to the Statistical Abstract of the United States (SAUS) dataset.

This work was supported by the Russian Science Foundation, grant number 18-71-10001.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://catalog.data.gov/dataset/statistical-abstract-of-the-united-states.

References

  1. Abraham, R., Erwig, M.: Header and unit inference for spreadsheets through spatial analyses. In: Proceedings of 2004 IEEE Symposium on Visual Languages and Human Centric Computing(VLHCC), pp. 165–172, September 2004. https://doi.org/10.1109/VLHCC.2004.29

  2. Cafarella, M.J., Halevy, A., Wang, D.Z., Wu, E., Zhang, Y.: Webtables: exploring the power of tables on the web. Proc. VLDB Endow. 1(1), 538–549 (2008). https://doi.org/10.14778/1453856.1453916

    Article  Google Scholar 

  3. Cunha, J., Fernandes, J.P., Mendes, J., Saraiva, J.: Spreadsheet engineering. In: Central European Functional Programming School - 5th Summer School, CEFP 2013, Cluj-Napoca, Romania, pp. 246–299, 8–20 July 2013. https://doi.org/10.1007/978-3-319-15940-9_6

    Google Scholar 

  4. Eberius, J., Werner, C., Thiele, M., Braunschweig, K., Dannecker, L., Lehner, W.: Deexcelerator: a framework for extracting relational data from partially structured documents. In: Proceedings of the 22nd ACM International Conference on Information & Knowledge Management CIKM 2013, pp. 2477–2480. ACM, New York (2013). https://doi.org/10.1145/2505515.2508210

  5. Embley, D.W., Hurst, M., Lopresti, D., Nagy, G.: Table-processing paradigms: a research survey. Int. J. Doc. Anal. Recogn. (IJDAR) 8, 66–86 (2006). https://doi.org/10.1007/s10032-006-0017-x

    Article  Google Scholar 

  6. Koci, E., Thiele, M., Romero, O., Lehner, W.: Table identification and reconstruction in spreadsheets. In: Dubois, E., Pohl, K. (eds.) Advanced Information Systems Engineering, pp. 527–541. Springer, Cham (2017)

    Chapter  Google Scholar 

  7. Koci, E., Thiele, M., Romero, O., Lehner, W.: Cell classification for layout recognition in spreadsheets. In: 8th International Joint Conference, 9–11 November 2016, IC3K 2016, Porto, Portugal, pp. 78–100, January 2019. https://doi.org/10.1007/978-3-319-99701-8

    Google Scholar 

  8. Nagy, G., Seth, S.C.: Table headers: an entrance to the data mine. In: 23rd International Conference on Pattern Recognition, ICPR 2016, Cancún, Mexico, pp. 4065–4070, 4–8 December 2016. https://doi.org/10.1109/ICPR.2016.7900270

  9. Panko, R.R.: Spreadsheet errors: What we know. what we think we can do. CoRR abs/0802.3457 (2008)

    Google Scholar 

  10. Pasupat, P., Liang, P.: Compositional semantic parsing on semi-structured tables. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 1470–1480. Association for Computational Linguistics (2015). https://doi.org/10.3115/v1/P15-1142

  11. Rastan, R., Paik, H.Y., Shepherd, J., Ryu, S.H., Beheshti, A.: Texus: table extraction system for pdf documents. In: Wang, J., Cong, G., Chen, J., Qi, J. (eds.) Databases Theory and Applications, pp. 345–349. Springer, Cham (2018)

    Chapter  Google Scholar 

  12. REASON, J.: Human error, pp. XV, 301, p. ill. 23 cm (1994). http://infoscience.epfl.ch/record/2249. bibliogr.: p. 258–290. Index

  13. Shigarov, A., Altaev, A., Mikhailov, A., Paramonov, V., Cherkashin, E.: Tabbypdf: web-based system for pdf table extraction. In: Damaševičius, R., Vasiljevienė, G. (eds.) Information and Software Technologies, pp. 257–269. Springer, Cham (2018)

    Chapter  Google Scholar 

  14. Shigarov, A.O., Mikhailov, A.A.: Rule-based spreadsheet data transformation from arbitrary to relational tables. Inf. Syst. 71, 123–136 (2017). https://doi.org/10.1016/j.is.2017.08.004

    Article  Google Scholar 

  15. Shigarov, A.O., Paramonov, V.V., Belykh, P.V., Bondarev, A.I.: Rule-based canonicalization of arbitrary tables in spreadsheets. In: Dregvaite, G., Damasevicius, R. (eds.) Information and Software Technologies, pp. 78–91. Springer, Cham (2016)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viacheslav Paramonov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paramonov, V., Shigarov, A., Vetrova, V., Mikhailov, A. (2020). Heuristic Algorithm for Recovering a Physical Structure of Spreadsheet Header. In: Borzemski, L., Świątek, J., Wilimowska, Z. (eds) Information Systems Architecture and Technology: Proceedings of 40th Anniversary International Conference on Information Systems Architecture and Technology – ISAT 2019. ISAT 2019. Advances in Intelligent Systems and Computing, vol 1050. Springer, Cham. https://doi.org/10.1007/978-3-030-30440-9_14

Download citation

Publish with us

Policies and ethics