Abstract
Tables in electronic documents (spreadsheets) contain large volumes of useful information about different domains. Efficient extraction of data from document tables plays a crucial role in its further usage including analysis and integration. The visual or logical structure of table elements might differ from its physical structure. Such differences cause difficulties for automated table processing and understanding. Automated correction from physical form to visual allows to simplify tables processing operations. In this paper, we propose a heuristic approach for transformation of tables’ header cells. The main goal of the proposed approach is to provide an algorithm and software tool for recovering a physical structure of a spreadsheet header. The proposed approach is illustrated by application to the Statistical Abstract of the United States (SAUS) dataset.
This work was supported by the Russian Science Foundation, grant number 18-71-10001.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abraham, R., Erwig, M.: Header and unit inference for spreadsheets through spatial analyses. In: Proceedings of 2004 IEEE Symposium on Visual Languages and Human Centric Computing(VLHCC), pp. 165–172, September 2004. https://doi.org/10.1109/VLHCC.2004.29
Cafarella, M.J., Halevy, A., Wang, D.Z., Wu, E., Zhang, Y.: Webtables: exploring the power of tables on the web. Proc. VLDB Endow. 1(1), 538–549 (2008). https://doi.org/10.14778/1453856.1453916
Cunha, J., Fernandes, J.P., Mendes, J., Saraiva, J.: Spreadsheet engineering. In: Central European Functional Programming School - 5th Summer School, CEFP 2013, Cluj-Napoca, Romania, pp. 246–299, 8–20 July 2013. https://doi.org/10.1007/978-3-319-15940-9_6
Eberius, J., Werner, C., Thiele, M., Braunschweig, K., Dannecker, L., Lehner, W.: Deexcelerator: a framework for extracting relational data from partially structured documents. In: Proceedings of the 22nd ACM International Conference on Information & Knowledge Management CIKM 2013, pp. 2477–2480. ACM, New York (2013). https://doi.org/10.1145/2505515.2508210
Embley, D.W., Hurst, M., Lopresti, D., Nagy, G.: Table-processing paradigms: a research survey. Int. J. Doc. Anal. Recogn. (IJDAR) 8, 66–86 (2006). https://doi.org/10.1007/s10032-006-0017-x
Koci, E., Thiele, M., Romero, O., Lehner, W.: Table identification and reconstruction in spreadsheets. In: Dubois, E., Pohl, K. (eds.) Advanced Information Systems Engineering, pp. 527–541. Springer, Cham (2017)
Koci, E., Thiele, M., Romero, O., Lehner, W.: Cell classification for layout recognition in spreadsheets. In: 8th International Joint Conference, 9–11 November 2016, IC3K 2016, Porto, Portugal, pp. 78–100, January 2019. https://doi.org/10.1007/978-3-319-99701-8
Nagy, G., Seth, S.C.: Table headers: an entrance to the data mine. In: 23rd International Conference on Pattern Recognition, ICPR 2016, Cancún, Mexico, pp. 4065–4070, 4–8 December 2016. https://doi.org/10.1109/ICPR.2016.7900270
Panko, R.R.: Spreadsheet errors: What we know. what we think we can do. CoRR abs/0802.3457 (2008)
Pasupat, P., Liang, P.: Compositional semantic parsing on semi-structured tables. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 1470–1480. Association for Computational Linguistics (2015). https://doi.org/10.3115/v1/P15-1142
Rastan, R., Paik, H.Y., Shepherd, J., Ryu, S.H., Beheshti, A.: Texus: table extraction system for pdf documents. In: Wang, J., Cong, G., Chen, J., Qi, J. (eds.) Databases Theory and Applications, pp. 345–349. Springer, Cham (2018)
REASON, J.: Human error, pp. XV, 301, p. ill. 23 cm (1994). http://infoscience.epfl.ch/record/2249. bibliogr.: p. 258–290. Index
Shigarov, A., Altaev, A., Mikhailov, A., Paramonov, V., Cherkashin, E.: Tabbypdf: web-based system for pdf table extraction. In: Damaševičius, R., Vasiljevienė, G. (eds.) Information and Software Technologies, pp. 257–269. Springer, Cham (2018)
Shigarov, A.O., Mikhailov, A.A.: Rule-based spreadsheet data transformation from arbitrary to relational tables. Inf. Syst. 71, 123–136 (2017). https://doi.org/10.1016/j.is.2017.08.004
Shigarov, A.O., Paramonov, V.V., Belykh, P.V., Bondarev, A.I.: Rule-based canonicalization of arbitrary tables in spreadsheets. In: Dregvaite, G., Damasevicius, R. (eds.) Information and Software Technologies, pp. 78–91. Springer, Cham (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Paramonov, V., Shigarov, A., Vetrova, V., Mikhailov, A. (2020). Heuristic Algorithm for Recovering a Physical Structure of Spreadsheet Header. In: Borzemski, L., Świątek, J., Wilimowska, Z. (eds) Information Systems Architecture and Technology: Proceedings of 40th Anniversary International Conference on Information Systems Architecture and Technology – ISAT 2019. ISAT 2019. Advances in Intelligent Systems and Computing, vol 1050. Springer, Cham. https://doi.org/10.1007/978-3-030-30440-9_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-30440-9_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-30439-3
Online ISBN: 978-3-030-30440-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)