Linearizing RF Power Amplifiers Using Adaptive RPEM Algorithm | SpringerLink
Skip to main content

Linearizing RF Power Amplifiers Using Adaptive RPEM Algorithm

  • Conference paper
  • First Online:
Industrial Networks and Intelligent Systems (INISCOM 2019)

Abstract

This paper proposes the adaptive indirect learning architecture (ILA) based digital predistortion (DPD) technique using a recursive prediction error minimization (RPEM) algorithm for linearizing radio frequency (RF) power amplifiers (PAs). The RPEM algorithm allows the forgetting factor to vary with time, which makes the predistorter (PD) parameter estimates more consistent and accurate in steady state, and hence reduces mean square errors. The proposed DPD technique is evaluated with respect to the error vector magnitude (EVM) and the adjacent channel power ratio (ACPR). The simulated PA Wiener model is used to validate the efficiency of the proposed algorithms. The simulation results have confirmed the improvement of the proposed adaptive RPEM ILA based DPD in terms of EVM and ACPR.

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 102.02-2016.12.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vo, H.M.: Implementing energy saving techniques for sensor nodes in IoT applications. EAI Endorsed Trans. Ind. Netw. Intell. Syst. 5(17), 1–7 (2018)

    Google Scholar 

  2. Ghannouchi, F.M., Hammi, O.: Behavioral modeling and predistortion. IEEE Microwave Mag. 10(7), 52–64 (2009)

    Article  Google Scholar 

  3. Chani-Cahuana, J., Landin, P.N., Fager, C., Eriksson, T.: Iterative learning control for RF power amplifier linearization. IEEE Trans. Microw. Theory Tech. 64(9), 2778–2789 (2016)

    Article  Google Scholar 

  4. Guan, L., Zhu, A.: Green communications: digital predistortion for wideband RF power amplifiers. IEEE Microwave Mag. 15(7), 84–99 (2014)

    Article  Google Scholar 

  5. Ding, L., et al.: A robust digital baseband predistorter constructed using memory polynomials. IEEE Trans. Commun. 52(1), 159–165 (2004)

    Article  Google Scholar 

  6. Guo, Y., Yu, C., Zhu, A.: Power adaptive digital predistortion for wideband RF power amplifiers with dynamic power transmission. IEEE Trans. Microw. Theory Tech. 63(11), 3595–3607 (2015)

    Article  Google Scholar 

  7. Schoukens, M., Hammenecker, J., Cooman, A.: Obtaining the preinverse of a power amplifier using iterative learning control. IEEE Trans. Microw. Theory Tech. 65(11), 4266–4273 (2017)

    Article  Google Scholar 

  8. Zhou, D., DeBrunner, V.E.: Novel adaptive nonlinear predistorters based on the direct learning algorithm. IEEE Trans. Signal Process. 55(1), 120–133 (2007)

    Article  MathSciNet  Google Scholar 

  9. Choi, S., Jeong, E.R., Lee, Y.H.: Adaptive predistortion with direct learning based on piecewise linear approximation of amplifier nonlinearity. IEEE Sel. Topics Signal Process. 3(3), 397–404 (2009)

    Article  Google Scholar 

  10. Suryasarman, P.M., Springer, A.: A comparative analysis of adaptive digital predistortion algorithms for multiple antenna transmitters. IEEE Trans. Circuits Syst. I 62(5), 1412–1420 (2015)

    Article  MathSciNet  Google Scholar 

  11. Eun, C., Powers, E.J.: A new Volterra predistorter based on the indirect learning architecture. IEEE Trans. Signal Process. 45(1), 223–227 (1997)

    Article  Google Scholar 

  12. Morgan, D.R., Ma, Z., Ding, L.: Reducing measurement noise effects in digital predistortion of RF power amplifiers, vol. 4, pp. 2436–2439, May 2003

    Google Scholar 

  13. Paaso, H., Mammela, A.: Comparison of direct learning and indirect learning predistortion architectures. In: Proceedings of IEEE International Symposium on Wireless Communication Systems, pp. 309–313, October 2008

    Google Scholar 

  14. Hussein, M.A., Bohara, V.A., Venard, O.: On the system level convergence of ILA and DLA for digital predistortion. In: Proceedings of 2012 International Symposium on Wireless Communication Systems (ISWCS), pp. 870–874, August 2012

    Google Scholar 

  15. Mohr, B., Li, W., Heinen, S.: Analysis of digital predistortion architectures for direct digital-to-RF transmitter systems. In: Proceedings of 2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 650–653, August 2012

    Google Scholar 

  16. Söderström, T., Stoica, P. (eds.): System Identification. Prentice-Hall Inc., Upper Saddle River (1988)

    MATH  Google Scholar 

  17. Abdelrahman, A.E., Hammi, O., Kwan, A.K., Zerguine, A., Ghannouchi, F.M.: A novel weighted memory polynomial for behavioral modeling and digital predistortion of nonlinear wireless transmitters. IEEE Trans. Ind. Electron. 63(3), 1745–1753 (2016)

    Article  Google Scholar 

  18. Mkadem, F.: Behavioral modeling and digital predistortion of wide- and multi-band transmitter systems. Ph.D. dissertation (2014)

    Google Scholar 

  19. Feng, X., Wang, Y., Feuvrie, B., Descamps, A.-S., Ding, Y., Yu, Z.: Analysis on LUT based digital predistortion using direct learning architecture for linearizing power amplifiers. EURASIP Wirel. Commun. Netw. 2016(1), 132 (2016)

    Article  Google Scholar 

  20. Kwon, J., Eun, C.: Digital feedforward compensation scheme for the non-linear power amplifier with memory. IJISTA 9, 326–334 (2010)

    Article  Google Scholar 

  21. Eun, C., Powers, E.J.: A predistorter design for a memory-less nonlinearity preceded by a dynamic linear system. In: Proceedings of GLOBECOM 1995, vol. 1, pp. 152–156, November 1995

    Google Scholar 

  22. Saleh, A.A.M.: Frequency-independent and frequency-dependent nonlinear models of TWT amplifiers. IEEE Trans. Commun. COM–29(11), 1715–1720 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van-Phuc Hoang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Le Duc, H., Nguyen, M.H., Hoang, VP., Nguyen, H.M., Nguyen, D.M. (2019). Linearizing RF Power Amplifiers Using Adaptive RPEM Algorithm. In: Duong, T., Vo, NS., Nguyen, L., Vien, QT., Nguyen, VD. (eds) Industrial Networks and Intelligent Systems. INISCOM 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 293. Springer, Cham. https://doi.org/10.1007/978-3-030-30149-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30149-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30148-4

  • Online ISBN: 978-3-030-30149-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics