Abstract
There are several industries that supplies key elements to other industries where they are critical. Hence, foundry castings are subject to very strict safety controls to assure the quality of the manufactured castings. In the last years, the use of computer vision technologies to control the surface quality. In particular, we have focused our work on inclusions, cold laps and misruns. We propose a new methodology that detects and categorises imperfections on the surface. To this end, we compared several features extracted from the images to highlight the regions of the casting that may be affected and, then, we applied several machine-learning techniques to classify the regions. Despite Deep Learning techniques have a very good performance in this problems, they need a huge dataset to get this results. In this case, due to the size of the dataset (which is a real problem in a real environment), we have use traditional machine learning techniques. Our experiments shows that this method obtains high precision rates, in general, and our best results are a 96,64% of accuracy and 0.9763 of area under ROC curve.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bodnarova, A., Williams, J., Bennamoun, M., Kubik, K.: Optimal textural features for flaw detection in textile materials. In: IEEE Region 10 Annual Conference. Speech and Image Technologies for Computing and Telecommunications, TENCON 1997, Proceedings of IEEE, vol. 1, pp. 307–310. IEEE (1997)
Bracewell, R.: The Fourier Transform and its Applications (1999)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Brinkmann, R.: The Art and Science of Digital Compositing: Techniques for Visual Effects, Animation and Motion Graphics. Morgan Kaufmann, Boston (2008)
Castillo, E., Gutierrez, J.M., Hadi, A.S.: Expert Systems and Probabilistic Network Models. Springer Science & Business Media, New York (2012). https://doi.org/10.1007/978-1-4612-2270-5
Castleman, K.: Digital image processing. Second (1996)
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)
Christopher, M.B.: PAttern Recognition and Machine Learning. Springer, New York (2016)
Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugenics 7(2), 179–188 (1936)
Fix, E., Hodges Jr., J.L.: Discriminatory analysis-nonparametric discrimination: consistency properties. California University Berkeley, Technical report (1951)
Garner, S.R., et al.: WEKA: the waikato environment for knowledge analysis. In: Proceedings of the New Zealand Computer Science Research Students Conference, pp. 57–64. Citeseer (1995)
Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press, Cambridge (2016)
Haralick, R., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973)
Iivarinen, J., Rauhamaa, J., Visa, A.: Unsupervised segmentation of surface defects. In: Proceedings of the 13th International Conference on Pattern Recognition, vol. 4, pp. 356–360. IEEE (1996)
Kamal, K., Qayyum, R., Mathavan, S., Zafar, T.: Wood defects classification using laws texture energy measures and supervised learning approach. Adv. Eng. Inform. 34, 125–135 (2017)
Kitchin, R., Lauriault, T.P.: Small data in the era of big data. Geo J. 80(4), 463–475 (2015)
Kopardekar, P., Mital, A., Anand, S.: Manual, hybrid and automated inspection literature and current research. Integr. Manuf. Syst. 4(1), 18–29 (1993)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
Mery, D., Arteta, C.: Automatic defect recognition in x-ray testing using computer vision. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1026–1035. IEEE (2017)
Mital, A., Govindaraju, M., Subramani, B.: A comparison between manual and hybrid methods in parts inspection. Integr. Manuf. Syst. 9(6), 344–349 (1998)
Monadjemi, A.: Towards efficient texture classification and abnormality detection. Ph.D. thesis, University of Bristol (2004)
Neogi, N., Mohanta, D.K., Dutta, P.K.: Review of vision-based steel surface inspection systems. EURASIP J. Image Video Process. 2014(1), 50 (2014)
Pastor-López, I., Santos, I., Santamaría-Ibirika, A., Salazar, M., de-la Pena-Sordo, J., Bringas, P.G.: Machine-learning-based surface defect detection and categorisation in high-precision foundry. In: 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 1359–1364. IEEE (2012)
Pearl, J.: Bayesian networks: a model of self-activated memory for evidential reasoning. In: Proceedings of the 7th Conference of the Cognitive Science Society (1985)
de la Puerta, J.G., Sanz, B., Santos, I., Bringas, P.G.: Using dalvik opcodes for malware detection on android. In: Onieva, E., Santos, I., Osaba, E., Quintián, H., Corchado, E. (eds.) HAIS 2015. LNCS (LNAI), vol. 9121, pp. 416–426. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19644-2_35
Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
Quinlan, J.R.: C4.5: Programs for Machine Learning. Elsevier, San Francisco (2014)
Siegmund, D., Samartzidis, T., Fu, B., Braun, A., Kuijper, A.: Fiber defect detection of inhomogeneous voluminous textiles. In: Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Olvera-López, J.A. (eds.) MCPR 2017. LNCS, vol. 10267, pp. 278–287. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59226-8_27
vom Stein, D.: Automatic visual 3-D inspection of castings. Foundry Trade J. 180(3641), 24–27 (2007)
Tout, K., Retraint, F., Cogranne, R.: Automatic vision system for wheel surface inspection and monitoring. In: ASNT Annual Conference, pp. 207–216 (2017)
Vapnik, V.: The Nature of Statistical Learning Theory. Springer Science & Business Media, New York (2013). https://doi.org/10.1007/978-1-4757-3264-1
Weimer, D., Scholz-Reiter, B., Shpitalni, M.: Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection. CIRP Ann. 65(1), 417–420 (2016)
Zhang, M.L., Zhou, Z.H.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038–2048 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Pastor-López, I., Sanz, B., de la Puerta, J.G., Bringas, P.G. (2019). Surface Defect Modelling Using Co-occurrence Matrix and Fast Fourier Transformation. In: Pérez García, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodríguez, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2019. Lecture Notes in Computer Science(), vol 11734. Springer, Cham. https://doi.org/10.1007/978-3-030-29859-3_63
Download citation
DOI: https://doi.org/10.1007/978-3-030-29859-3_63
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29858-6
Online ISBN: 978-3-030-29859-3
eBook Packages: Computer ScienceComputer Science (R0)