Surface Defect Modelling Using Co-occurrence Matrix and Fast Fourier Transformation | SpringerLink
Skip to main content

Surface Defect Modelling Using Co-occurrence Matrix and Fast Fourier Transformation

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11734))

Included in the following conference series:

  • 1502 Accesses

Abstract

There are several industries that supplies key elements to other industries where they are critical. Hence, foundry castings are subject to very strict safety controls to assure the quality of the manufactured castings. In the last years, the use of computer vision technologies to control the surface quality. In particular, we have focused our work on inclusions, cold laps and misruns. We propose a new methodology that detects and categorises imperfections on the surface. To this end, we compared several features extracted from the images to highlight the regions of the casting that may be affected and, then, we applied several machine-learning techniques to classify the regions. Despite Deep Learning techniques have a very good performance in this problems, they need a huge dataset to get this results. In this case, due to the size of the dataset (which is a real problem in a real environment), we have use traditional machine learning techniques. Our experiments shows that this method obtains high precision rates, in general, and our best results are a 96,64% of accuracy and 0.9763 of area under ROC curve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bodnarova, A., Williams, J., Bennamoun, M., Kubik, K.: Optimal textural features for flaw detection in textile materials. In: IEEE Region 10 Annual Conference. Speech and Image Technologies for Computing and Telecommunications, TENCON 1997, Proceedings of IEEE, vol. 1, pp. 307–310. IEEE (1997)

    Google Scholar 

  2. Bracewell, R.: The Fourier Transform and its Applications (1999)

    Google Scholar 

  3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  4. Brinkmann, R.: The Art and Science of Digital Compositing: Techniques for Visual Effects, Animation and Motion Graphics. Morgan Kaufmann, Boston (2008)

    Google Scholar 

  5. Castillo, E., Gutierrez, J.M., Hadi, A.S.: Expert Systems and Probabilistic Network Models. Springer Science & Business Media, New York (2012). https://doi.org/10.1007/978-1-4612-2270-5

    Book  MATH  Google Scholar 

  6. Castleman, K.: Digital image processing. Second (1996)

    Google Scholar 

  7. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  MATH  Google Scholar 

  8. Christopher, M.B.: PAttern Recognition and Machine Learning. Springer, New York (2016)

    Google Scholar 

  9. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugenics 7(2), 179–188 (1936)

    Article  Google Scholar 

  10. Fix, E., Hodges Jr., J.L.: Discriminatory analysis-nonparametric discrimination: consistency properties. California University Berkeley, Technical report (1951)

    Google Scholar 

  11. Garner, S.R., et al.: WEKA: the waikato environment for knowledge analysis. In: Proceedings of the New Zealand Computer Science Research Students Conference, pp. 57–64. Citeseer (1995)

    Google Scholar 

  12. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  13. Haralick, R., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973)

    Article  Google Scholar 

  14. Iivarinen, J., Rauhamaa, J., Visa, A.: Unsupervised segmentation of surface defects. In: Proceedings of the 13th International Conference on Pattern Recognition, vol. 4, pp. 356–360. IEEE (1996)

    Google Scholar 

  15. Kamal, K., Qayyum, R., Mathavan, S., Zafar, T.: Wood defects classification using laws texture energy measures and supervised learning approach. Adv. Eng. Inform. 34, 125–135 (2017)

    Article  Google Scholar 

  16. Kitchin, R., Lauriault, T.P.: Small data in the era of big data. Geo J. 80(4), 463–475 (2015)

    Google Scholar 

  17. Kopardekar, P., Mital, A., Anand, S.: Manual, hybrid and automated inspection literature and current research. Integr. Manuf. Syst. 4(1), 18–29 (1993)

    Article  Google Scholar 

  18. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  19. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  20. Mery, D., Arteta, C.: Automatic defect recognition in x-ray testing using computer vision. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1026–1035. IEEE (2017)

    Google Scholar 

  21. Mital, A., Govindaraju, M., Subramani, B.: A comparison between manual and hybrid methods in parts inspection. Integr. Manuf. Syst. 9(6), 344–349 (1998)

    Article  Google Scholar 

  22. Monadjemi, A.: Towards efficient texture classification and abnormality detection. Ph.D. thesis, University of Bristol (2004)

    Google Scholar 

  23. Neogi, N., Mohanta, D.K., Dutta, P.K.: Review of vision-based steel surface inspection systems. EURASIP J. Image Video Process. 2014(1), 50 (2014)

    Article  Google Scholar 

  24. Pastor-López, I., Santos, I., Santamaría-Ibirika, A., Salazar, M., de-la Pena-Sordo, J., Bringas, P.G.: Machine-learning-based surface defect detection and categorisation in high-precision foundry. In: 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 1359–1364. IEEE (2012)

    Google Scholar 

  25. Pearl, J.: Bayesian networks: a model of self-activated memory for evidential reasoning. In: Proceedings of the 7th Conference of the Cognitive Science Society (1985)

    Google Scholar 

  26. de la Puerta, J.G., Sanz, B., Santos, I., Bringas, P.G.: Using dalvik opcodes for malware detection on android. In: Onieva, E., Santos, I., Osaba, E., Quintián, H., Corchado, E. (eds.) HAIS 2015. LNCS (LNAI), vol. 9121, pp. 416–426. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19644-2_35

    Chapter  Google Scholar 

  27. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)

    Google Scholar 

  28. Quinlan, J.R.: C4.5: Programs for Machine Learning. Elsevier, San Francisco (2014)

    Google Scholar 

  29. Siegmund, D., Samartzidis, T., Fu, B., Braun, A., Kuijper, A.: Fiber defect detection of inhomogeneous voluminous textiles. In: Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Olvera-López, J.A. (eds.) MCPR 2017. LNCS, vol. 10267, pp. 278–287. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59226-8_27

    Chapter  Google Scholar 

  30. vom Stein, D.: Automatic visual 3-D inspection of castings. Foundry Trade J. 180(3641), 24–27 (2007)

    Google Scholar 

  31. Tout, K., Retraint, F., Cogranne, R.: Automatic vision system for wheel surface inspection and monitoring. In: ASNT Annual Conference, pp. 207–216 (2017)

    Google Scholar 

  32. Vapnik, V.: The Nature of Statistical Learning Theory. Springer Science & Business Media, New York (2013). https://doi.org/10.1007/978-1-4757-3264-1

    Book  MATH  Google Scholar 

  33. Weimer, D., Scholz-Reiter, B., Shpitalni, M.: Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection. CIRP Ann. 65(1), 417–420 (2016)

    Article  Google Scholar 

  34. Zhang, M.L., Zhou, Z.H.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038–2048 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iker Pastor-López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pastor-López, I., Sanz, B., de la Puerta, J.G., Bringas, P.G. (2019). Surface Defect Modelling Using Co-occurrence Matrix and Fast Fourier Transformation. In: Pérez García, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodríguez, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2019. Lecture Notes in Computer Science(), vol 11734. Springer, Cham. https://doi.org/10.1007/978-3-030-29859-3_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29859-3_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29858-6

  • Online ISBN: 978-3-030-29859-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics