Texture Descriptors for Automatic Estimation of Workpiece Quality in Milling | SpringerLink
Skip to main content

Texture Descriptors for Automatic Estimation of Workpiece Quality in Milling

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2019)

Abstract

Milling workpiece present a regular pattern when they are correctly machined. However, if some problems occur, the pattern is not so homogeneous and, consequently, its quality is reduced. This paper proposes a method based on the use of texture descriptors in order to detect workpiece wear in milling automatically. Images are captured by using a boroscope connected to a camera and the whole inner surface of the workpiece is analysed. Then texture features are computed from the coocurrence for each image. Next, feature vectors are classified by 4 different approaches, Decision Trees, K Neighbors, Naïve Bayes and a Multilayer Perceptron. Linear discriminant analysis reduces the number of features from 6 to 2 without loosing accuracy. A hit rate of 91.8% is achieved with Decision Trees what fulfils the industrial requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arivazhagan, S., Ganesan, L.: Texture classification using wavelet transform. Pattern Recogn. Lett. 24(9–10), 1513–1521 (2003)

    Article  Google Scholar 

  2. Bustillo, A., Correa, M.: Using artificial intelligence to predict surface roughness in deep drilling of steel components. J. Intell. Manufact. 23(5), 1893–1902 (2012). https://doi.org/10.1007/s10845-011-0506-8

    Article  Google Scholar 

  3. Chaves, M.L., Vizán, A., Márquez, J.J., Ríos, J.: Inspection model and correlation functions to assist in the correction of qualitative defects of injected parts. Polym. Eng. Sci. 50(6), 1268–1279 (2010). https://doi.org/10.1002/pen.21647, https://onlinelibrary.wiley.com/doi/abs/10.1002/pen.21647

    Article  Google Scholar 

  4. Dai, Y., Zhu, K.: A machine vision system for micro-milling tool condition monitoring. Precis. Eng. 52, 183–191 (2018). https://doi.org/10.1016/j.precisioneng.2017.12.006, http://www.sciencedirect.com/science/article/pii/S0141635917302817

    Article  Google Scholar 

  5. Dunwell Tech Inc.: Dinocapture 2.0: microscope imaging software (2019). https://www.dinolite.us/dinocapture

  6. Dutta, S., Pal, S., Mukhopadhyay, S., Sen, R.: Application of digital image processing in tool condition monitoring: a review. CIRP J. Manufact. Sci. Technol. 6(3), 212–232 (2013). https://doi.org/10.1016/j.cirpj.2013.02.005, http://www.sciencedirect.com/science/article/pii/S1755581713000072

    Article  Google Scholar 

  7. Haralick, R., Shanmugan, K., Dinstein, I.: Texture features for image classification. IEEE Syst. Man Cybern. 3(6), 610–621 (1973)

    Article  Google Scholar 

  8. Hu, H., Liu, Y., Liu, M., Nie, L.: Surface defect classification in large-scale strip steel image collection via hybrid chromosome genetic algorithm. Neurocomputing 181, 86–95 (2016). https://doi.org/10.1016/j.neucom.2015.05.134, http://www.sciencedirect.com/science/article/pii/S0925231215018482. Big Data Driven Intelligent Transportation Systems

    Article  Google Scholar 

  9. Li, L., An, Q.: An in-depth study of tool wear monitoring technique based on image segmentation and texture analysis. Measurement 79, 44–52 (2016). https://doi.org/10.1016/j.measurement.2015.10.029, http://www.sciencedirect.com/science/article/pii/S0263224115005631

    Article  Google Scholar 

  10. López-Estrada, L., Fajardo-Pruna, M., Sánchez-González, L., Pérez, H., Fernández-Robles, L., Vizán, A.: Design and implementation of a stereo vision system on an innovative 6DOF single-edge machining device for tool tip localization and path correction. Sensors 18(9) (2018). https://doi.org/10.3390/s18093132, http://www.mdpi.com/1424-8220/18/9/3132

    Article  Google Scholar 

  11. Park, G.H., Cho, H.H., Choi, M.R.: A contrast enhancement method using dynamic range separate histogram equalization. IEEE Trans. Consum. Electron. 54(4), 1981–1987 (2008)

    Article  Google Scholar 

  12. Szydłowski, M., Powałka, B., Matuszak, M., Kochmański, P.: Machine vision micro-milling tool wear inspection by image reconstruction and light reflectance. Precis. Eng. 44, 236–244 (2016). https://doi.org/10.1016/j.precisioneng.2016.01.003, http://www.sciencedirect.com/science/article/pii/S0141635916000052

    Article  Google Scholar 

  13. Zuiderveld, K.: Contrast limited adaptive histogram equalization. In: Heckbert, P.S. (ed.) Graphics Gems IV, pp. 474–485. Academic Press Professional Inc., San Diego, CA, USA (1994). http://dl.acm.org/citation.cfm?id=180895.180940

    Chapter  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of Spanish Ministry of Economy, Industry and Competitiveness, through grant DPI2016-79960-C3-2-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidia Sánchez-González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Castejón-Limas, M., Sánchez-González, L., Díez-González, J., Fernández-Robles, L., Riego, V., Pérez, H. (2019). Texture Descriptors for Automatic Estimation of Workpiece Quality in Milling. In: Pérez García, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodríguez, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2019. Lecture Notes in Computer Science(), vol 11734. Springer, Cham. https://doi.org/10.1007/978-3-030-29859-3_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29859-3_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29858-6

  • Online ISBN: 978-3-030-29859-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics