A Hybrid Automatic Classification Model for Skin Tumour Images | SpringerLink
Skip to main content

A Hybrid Automatic Classification Model for Skin Tumour Images

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2019)

Abstract

In medical practice early accurate detection of all types of skin tumours is essential to guide appropriate management and improve patients’ survival. The most important is to differentiate between malignant skin tumours and benign lesions. The aim of this research is classification of skin tumours by analyzing medical skin tumour dermoscopy images. This paper is focused on a new strategy based on hybrid model which combines mathematics and artificial techniques to define strategy to automatic classification for skin tumour images. The proposed hybrid system is tested on well-known HAM10000 data set, and experimental results are compared with similar researches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Elgamal, M.: Automatic skin cancer images classification. Int. J. Adv. Comput. Sci. Appl. 4(3), 287–294 (2013)

    Google Scholar 

  2. Swetter, S.M., Tsao, H., Bichakjian, C.K., Curiel-Lewandrowski, C.: Guidelines of care for the management of primary cutaneous melanoma. J. Am. Acad. Dermatol. 80(1), 208–250 (2019)

    Article  Google Scholar 

  3. Messadi, M., Bessaid, A., Taleb-Ahmed, A.: Extraction of specific parameters for skin tumour classification. J. Med. Eng. Technol. 33(4), 288–295 (2009)

    Article  Google Scholar 

  4. Abbes, W., Sellami, D.: High-level features for automatic skin lesions neural network based classification. In: IEEE IPAS 2016: International Image Processing, Application and Systems Conference, Hammamet, Tunisia (2016). https://doi.org/10.1109/ipas.2016.7880148

  5. Krawczyk, B., Simić, D., Simić, S., Woźniak, M.: Automatic diagnosis of primary headaches by machine learning methods. Open Med. 8(2), 157–165 (2013)

    Article  Google Scholar 

  6. Simić, S., Banković, Z., Simić, D., Simić, S.D.: A hybrid clustering approach for diagnosing medical diseases. In: de Cos Juez, F., et al. (eds) Hybrid Artificial Intelligent Systems. HAIS 2018. LNCS, vol. 10870, pp. 741–775. Springer, Cham. https://doi.org/10.1007/978-3-319-92639-1_62

    Google Scholar 

  7. Simić, S., Banković, Z., Simić, D., Simić, Svetislav D.: Different approaches of data and attribute selection on headache disorder. In: Yin, H., Camacho, D., Novais, P., Tallón-Ballesteros, Antonio J. (eds.) IDEAL 2018. LNCS, vol. 11315, pp. 241–249. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03496-2_27

    Chapter  Google Scholar 

  8. Simić, S., Milutinović, D., Sekulić, S., Simić, D., Simić, S.D., Đorđević, J.: A hybrid case-based reasoning approach to detecting the optimal solution in nurse scheduling problem. Logic J. IGPL (2018). https://doi.org/10.1093/jigpal/jzy047, https://academic.oup.com/jigpal/advance-article/doi/10.1093/jigpal/jzy047/5107037

  9. Aggarwal, C.C.: Data Classification: Algorithms and Applications. Chapman and Hall/CRC, Boca Raton (2014)

    Google Scholar 

  10. Wozniak, M.: Hybrid Classifiers: Methods of Data, Knowledge, and Classifier Combination. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-642-40997-4

    Book  Google Scholar 

  11. Cruz-Roa, A.A., Arevalo Ovalle, J.E., Madabhushi, A., González Osorio, F.A.: A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 403–410. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_50

    Chapter  Google Scholar 

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  13. Chuchu, N., et al.: Smartphone applications for triaging adults with skin lesions that are suspicious for melanoma. Cochrane Database Syst. Rev. 12 (2018). https://doi.org/10.1002/14651858.cd013192. Art. No.: CD013192

  14. Lee, T., Gallagher, R., Coldman, A., McLean, D.: Dullrazor®: a software approach to hair removal from images. Comput. Biol. Med. 21(6), 533–543 (1997)

    Article  Google Scholar 

  15. Andreassi, L., et al.: Digital dermoscopy analysis for the differentiation of atypical nevi and early melanoma. Arch. Dermatol. 135, 1459–1465 (1999)

    Article  Google Scholar 

  16. Tran, N.M., Burdejová, P., Osipenko, M., Härdle, W.K.: Principal Component Analysis in an Asymmetric Norm. SFB 649 Discussion Paper 2016–040 (2016). http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2016-040.pdf

  17. Jolliffe, I.: Principal Component Analysis, 2nd edn. Springer, New York (2002). https://doi.org/10.1007/b98835

  18. Aussenhofer, M., Dann, S., Langi, Z., Toth, G.: An algorithm to find maximum area polygons circumscribed about a convex polygon. Discrete Appl. Math. 255, 98–108 (2019). https://doi.org/10.1016/j.dam.2018.08.017

    Article  MathSciNet  MATH  Google Scholar 

  19. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). https://doi.org/10.1007/BF00994018

    Article  MATH  Google Scholar 

  20. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  Google Scholar 

  21. https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/DBW86T

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragan Simić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Simić, S., Simić, S.D., Banković, Z., Ivkov-Simić, M., Villar, J.R., Simić, D. (2019). A Hybrid Automatic Classification Model for Skin Tumour Images. In: Pérez García, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodríguez, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2019. Lecture Notes in Computer Science(), vol 11734. Springer, Cham. https://doi.org/10.1007/978-3-030-29859-3_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29859-3_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29858-6

  • Online ISBN: 978-3-030-29859-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics