Abstract
Network intrusion detection systems (NIDS) detect attacks or anomalous network traffic patterns in order to avoid cybersecurity issues. Anomaly detection algorithms are used to identify unusual behavior or outliers in the network traffic in order to generate alarms. Traditionally, Gaussian Mixture Models (GMMs) have been used for probabilistic-based anomaly detection NIDS. We propose to use multiple simple GMMs to model each individual feature, and an asymmetric voting scheme that aggregates the individual anomaly detectors to provide. We test our approach using the NSL dataset. We construct the normal behavior models using only the samples labelled as normal in this dataset and evaluate our proposal using the official NSL testing set. As a result, we obtain a F1-score over 0.9, outperforming other supervised and unsupervised proposals.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Axelsson, S.: Intrusion detection systems: a survey and taxonomy. Chalmers University of Technology, Tech. rep. (2000)
Bahrololum, M., Khaleghi, M.: Anomaly intrusion detection system using Gaussian mixture model. In: 2008 Third International Conference on Convergence and Hybrid Information Technology, November 2008, vol. 1, pp. 1162–1167. https://doi.org/10.1109/ICCIT.2008.17
Barkan, O., Averbuch, A.: Robust mixture models for anomaly detection. In: 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), September 2016, pp. 1–6. https://doi.org/10.1109/MLSP.2016.7738885
Breunig, M.M., Kriegel, H., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: Chen, W., Naughton, J.F., Bernstein, P.A. (eds.) Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, 16–18 May 2000, Dallas, Texas, USA, pp. 93–104. ACM (2000). https://doi.org/10.1145/342009.335388
Denning, D.E.: An intrusion-detection model. IEEE Trans. Softw. Eng. 13(2), 222–232 (1987). https://doi.org/10.1109/TSE.1987.232894
Domingues, R., Filippone, M., Michiardi, P., Zouaoui, J.: A comparative evaluation of outlier detection algorithms: experiments and analyses. Pattern Recogn. 74, 406–421 (2018)
Dromard, J., Roudière, G., Owezarski, P.: Online and scalable unsupervised network anomaly detection method. IEEE Trans. Netw. Serv. Manage. 14(1), 34–47 (2017). https://doi.org/10.1109/TNSM.2016.2627340
Heady, R., Luger, G., Maccabe, A., Servilla, M.: The architecture of a network level intrusion detection system. Tech. rep., Los Alamos National Lab., NM, United States, New Mexico University, Albuquerque (1990)
Hock, D., Kappes, M.: A self-learning network anomaly detection system using majority voting. In: Dowland, P., Furnell, S., Ghita, B.V. (eds.) Proceedings Tenth International Network Conference, INC 2014, Plymouth, UK, 8–10 July 2014, pp. 59–69. Plymouth University (2014). http://www.cscan.org/openaccess/?paperid=225
Hodge, V.J., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2), 85–126 (2004). https://doi.org/10.1007/s10462-004-4304-y
Kdd cup 1999, October 2007. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
Kim, J., Scott, C.D.: Robust kernel density estimation. J. Mach. Learn. Res. 13(1), 2529–2565 (2012). http://dl.acm.org/citation.cfm?id=2503308.2503323
Kukielka, P., Kotulski, Z.: Analysis of neural networks usage for detection of a new attack in IDS. Ann. UMCS Inf. 10(1), 51–59 (2010)
Liu, D., Lung, C., Lambadaris, I., Seddigh, N.: Network traffic anomaly detection using clustering techniques and performance comparison. In: 2013 26th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), May 2013, pp. 1–4. https://doi.org/10.1109/CCECE.2013.6567739
Moustafa, N., Slay, J.: UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). In: Military Communications and Information Systems Conference (MilCIS), pp. 1–6. IEEE Stream (2015)
Moustafa, N., Slay, J.: The evaluation of network anomaly detection systems: statistical analysis of the UNSW-NB15 data set and the comparison with the KDD99 data set. Inf. Secur. J. A Global Perspect. 25(1–13), 1–14 (2016)
NSL-KDD data set for network-based intrusion detection systems, March 2009. http://nsl.cs.unb.ca/NSL-KDD/
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Revathi, S., Malathi, A.: A detailed analysis on NSL-KDD dataset using various machine learning techniques for intrusion detection. Int. J. Eng. Res. Tech. 2(12), 1848–1853 (2013)
Reynolds, D.D.: Gaussian Mixture Models. In: Li, S.Z., Jain, A. (eds.) Encyclopedia of Biometrics. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-73003-5
Shahreza, M.L., Moazzami, D., Moshiri, B., Delavar, M.: Anomaly detection using a self-organizing map and particle swarm optimization. Scientia Iranica 18(6), 1460–1468 (2011). https://doi.org/10.1016/j.scient.2011.08.025
Zhang, R., Zhang, S., Muthuraman, S., Jiang, J.: One class support vector machine for anomaly detection in the communication network performance data. In: Proceedings of the 5th Conference on Applied Electromagnetics, Wireless and Optical Communications, pp. 31–37. ELECTROSCIENCE’07, World Scientific and Engineering Academy and Society (WSEAS), Stevens Point (2007)
Acknowledgements
This work was supported by the Spanish Ministry of Economy and Competitiveness under contracts TIN-2015-65277-R, AYA2015-65973-C3-3-R and RTC-2016-5434-8.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Blanco, R., Malagón, P., Briongos, S., Moya, J.M. (2019). Anomaly Detection Using Gaussian Mixture Probability Model to Implement Intrusion Detection System. In: Pérez García, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodríguez, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2019. Lecture Notes in Computer Science(), vol 11734. Springer, Cham. https://doi.org/10.1007/978-3-030-29859-3_55
Download citation
DOI: https://doi.org/10.1007/978-3-030-29859-3_55
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29858-6
Online ISBN: 978-3-030-29859-3
eBook Packages: Computer ScienceComputer Science (R0)