Deep CNN-Based Recognition of JSL Finger Spelling | SpringerLink
Skip to main content

Deep CNN-Based Recognition of JSL Finger Spelling

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11734))

Included in the following conference series:

Abstract

In this paper, we present a framework for recognition of static finger spelling in Japanese Sign Language on RGB images. The finger spelled signs were recognized by an ensemble consisting of a ResNet-based convolutional neural network and two ResNet quaternion convolutional neural networks. A 3D articulated hand model has been used to generate synthetic finger spellings and to extend a dataset consisting of real hand gestures. Twelve different gesture realizations were prepared for each of 41 signs. Ten images have been rendered for each realization through interpolations between the starting and end poses. Experimental results demonstrate that owing to sufficient amount of training data a high recognition rate can be attained on images from a single RGB camera. Results achieved by the ResNet quaternion convolutional neural network are better than results obtained by the ResNet CNN. The best recognition results were achieved by the ensemble. The JSL-rend dataset is available for download.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sagayam, M., Hemanth, J.: Hand posture and gesture recognition techniques for virtual reality applications: a survey. Virtual Reality 21(2), 91–107 (2017)

    Article  Google Scholar 

  2. Chen, F., Zhong, Q., Cannella, F., Sekiyama, K., Fukuda, T.: Hand gesture modeling and recognition for human and robot interactive assembly using Hidden Markov Models. Int. J. Adv. Rob. Syst. 12(4), 48 (2015)

    Article  Google Scholar 

  3. Raj, M.D., Gogul, I., Thangaraja, M., Kumar, V.: Static gesture recognition based precise positioning of 5-DOF robotic arm using FPGA. In: Trends in Industrial Measurement and Automation (TIMA), pp. 1–6 (2017)

    Google Scholar 

  4. Liu, H., Wang, L.: Gesture recognition for human-robot collaboration: a review. Int. J. Ind. Ergon. 68, 355–367 (2018)

    Article  Google Scholar 

  5. Patil, S., et al.: GesturePod: programmable gesture recognition for augmenting assistive devices, Technical report, Microsoft, May 2018

    Google Scholar 

  6. Rautaray, S., Agrawal, A.: Vision based hand gesture recognition for human computer interaction: a survey. Artif. Intell. Rev. 43(1), 1–54 (2015)

    Article  Google Scholar 

  7. Al-Shamayleh, A.S., Ahmad, R., Abushariah, M., Alam, K.A., Jomhari, N.: A systematic literature review on vision based gesture recognition techniques. Multimedia Tools Appl. 77(21), 28121–28184 (2018)

    Article  Google Scholar 

  8. Ohn-Bar, E., Trivedi, M.: Hand gesture recognition in real time for automotive interfaces: a multimodal vision-based approach and evaluations. IEEE Trans. Intell. Transp. Syst. 15(6), 2368–2377 (2014)

    Article  Google Scholar 

  9. Pisharady, P., Saerbeck, M.: Recent methods and databases in vision-based hand gesture recognition. Comput. Vis. Image Underst. 141, 152–165 (2015)

    Article  Google Scholar 

  10. Oyedotun, O., Khashman, A.: Deep learning in vision-based static hand gesture recognition. Neural Comput. Appl., 1–11 (2016)

    Google Scholar 

  11. Tompson, J., Stein, M., LeCun, Y., Perlin, K.: Real-time continuous pose recovery of human hands using convolutional networks. ACM Trans. Graph. 33(5) (2014)

    Article  Google Scholar 

  12. Nagi, J., Ducatelle, F., et al.: Max-pooling convolutional neural networks for vision-based hand gesture recognition. In: IEEE ICSIP, pp. 342–347 (2011)

    Google Scholar 

  13. Barros, P., Magg, S., Weber, C., Wermter, S.: A multichannel convolutional neural network for hand posture recognition. In: Wermter, S., et al. (eds.) ICANN 2014. LNCS, vol. 8681, pp. 403–410. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11179-7_51

    Chapter  Google Scholar 

  14. Koller, O., Ney, H., Bowden, R.: Deep hand: how to train a CNN on 1 million hand images when your data is continuous and weakly labelled. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3793–3802 (2016)

    Google Scholar 

  15. Tabata, Y., Kuroda, T.: Finger spelling recognition using distinctive features of hand shape. In: International Conference on Disability, Virtual Reality and Associated Technologies with Art Abilitation, pp. 287–292 (2008)

    Google Scholar 

  16. Kane, L., Khanna, P.: A framework for live and cross platform fingerspelling recognition using modified shape matrix variants on depth silhouettes. Comput. Vis. Image Underst. 141, 138–151 (2015)

    Article  Google Scholar 

  17. Kwolek, B., Sako, S.: Learning siamese features for finger spelling recognition. In: Blanc-Talon, J., Penne, R., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2017. LNCS, vol. 10617, pp. 225–236. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70353-4_20

    Chapter  Google Scholar 

  18. Rosalina, L.Y., Hadisukmana, N., Wahyu, R.B., Roestam, R., Wahyu, Y.: Implementation of real-time static hand gesture recognition using artificial neural network. In: CAIPT, pp. 1–6 (2017)

    Google Scholar 

  19. Asad, M., Slabaugh, G.: SPORE: staged probabilistic regression for hand orientation inference. Comput. Vis. Image Underst. 161, 114–129 (2017)

    Article  Google Scholar 

  20. Dawod, A.Y., Nordin, M.J., Abdullah, J.: Static fingerspelling recognition based on boundary tracing algorithm and chain code. In: International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence, pp. 104–109. ACM (2018)

    Google Scholar 

  21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  22. Parcollet, T., et al.: Quaternion convolutional neural networks for end-to-end automatic speech recognition. In: Interspeech, ISCA, pp. 22–26 (2018)

    Google Scholar 

  23. Popa, C.A.: Learning algorithms for quaternion-valued neural networks. Neural Process. Lett. 47(3), 949–973 (2018)

    Article  Google Scholar 

  24. Nitta, T.: A quaternary version of the back-propagation algorithm. In: Proceedings of International Conference on Neural Networks, vol. 5, pp. 2753–2756 (1995)

    Google Scholar 

  25. Zhu, X., Xu, Y., Xu, H., Chen, C.: Quaternion convolutional neural networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 645–661. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_39

    Chapter  Google Scholar 

  26. Opitz, D., Maclin, R.: Popular ensemble methods: an empirical study. J. Artif. Int. Res. 11(1), 169–198 (1999)

    MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by Polish National Science Center (NCN) under a research grant 2017/27/B/ST6/01743 and JSPS KAKENHI under a grant 17H06114.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Kwolek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguen, N.T., Sako, S., Kwolek, B. (2019). Deep CNN-Based Recognition of JSL Finger Spelling. In: Pérez García, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodríguez, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2019. Lecture Notes in Computer Science(), vol 11734. Springer, Cham. https://doi.org/10.1007/978-3-030-29859-3_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29859-3_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29858-6

  • Online ISBN: 978-3-030-29859-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics