Influence Maximization and Extremal Optimization | SpringerLink
Skip to main content

Influence Maximization and Extremal Optimization

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11734))

Included in the following conference series:

Abstract

Influence Extremal Optimization (InfEO) is an algorithm based on Extremal Optimization, adapted for the influence maximization problem for the independent cascade model. InfEO maximizes the marginal contribution of a node to the influence set of the model. Numerical experiments are used to compare InfEO with other influence maximization methods, indicating the potential of this approach. Practical results are discussed on a network constructed from publication data in the field of computer science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.orgnet.com/divided2.html, accessed April, 2019.

  2. 2.

    www.webofknowledge.com, accessed February, 2019.

  3. 3.

    https://images.webofknowledge.com/images/help/WOS/hs_citation_applications.html.

References

  1. Berry, G., Cameron, C.J., Park, P., Macy, M.: The opacity problem in social contagion. Soc. Netw. 56, 93–101 (2019). https://doi.org/10.1016/j.socnet.2018.09.001

    Article  Google Scholar 

  2. Boettcher, S., Percus, A.G.: Optimization with extremal dynamics. Complexity 8(2), 57–62 (2002)

    Article  MathSciNet  Google Scholar 

  3. Bucur, D.: Influence Maximization in Social Networks with Genetic Algorithms Influence Maximization in Social Networks with Genetic Algorithms, March 2016. https://doi.org/10.1007/978-3-319-31204-0

    Google Scholar 

  4. Bucur, D., Iacca, G., Marcelli, A., Squillero, G.: Multi-objective Evolutionary Algorithms for Influence Maximization in Social Networks Multi-Objective Evolutionary Algorithms for Influence Maximization in Social Networks, August 2017. https://doi.org/10.1007/978-3-319-55849-3

    Google Scholar 

  5. Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2009, pp. 199–208. ACM, New York (2009). https://doi.org/10.1145/1557019.1557047. http://doi.acm.org/10.1145/1557019.1557047

  6. Domingos, P., Richardson, M.: Mining the network value of customers. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 57–66. ACM (2001)

    Google Scholar 

  7. Fan, X., Li, V.O.: The probabilistic maximum coverage problem in social networks. In: GLOBECOM - IEEE Global Telecommunications Conference (2011). https://doi.org/10.1109/GLOCOM.2011.6133985

  8. Gao, J., Ghasemiesfeh, G., Schoenebeck, G., Yu, F.Y.: General threshold model for social cascades: analysis and simulations. In: EC 2016 - Proceedings of the 2016 ACM Conference on Economics and Computation, pp. 617–634 (2016). https://doi.org/10.1145/2940716.2940778

  9. Gong, M., Yan, J., Shen, B., Ma, L., Cai, Q.: Influence maximization in social networks based on discrete particle swarm optimization. Inf. Sci. 367–368, 600–614 (2016). https://doi.org/10.1016/j.ins.2016.07.012

    Article  Google Scholar 

  10. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146. ACM (2003)

    Google Scholar 

  11. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network, p. 137 (2004). https://doi.org/10.1145/956750.956769

  12. Kuo, T.T., Hung, S.C., Lin, W.S., Lin, S.D., Peng, T.C., Shih, C.C.: Assessing the quality of diffusion models using real-world social network data. In: Proceedings - 2011 Conference on Technologies and Applications of Artificial Intelligence, TAAI 2011, pp. 200–205 (2011). https://doi.org/10.1109/TAAI.2011.42

  13. Leung, T., Chung, F.L.: Persuasion driven influence propagation in social networks, pp. 548–554 (2014). https://doi.org/10.1109/ASONAM.2014.6921640. cited By 5

  14. Liu, W., Chen, X., Jeon, B., Chen, L., Chen, B.: Influence maximization on signed networks under independent cascade model. Appl. Intell. 49(3), 912–928 (2019). https://doi.org/10.1007/s10489-018-1303-2

    Article  Google Scholar 

  15. Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.: The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations. Behav. Ecol. Sociobiol. 54(4), 396–405 (2003)

    Article  Google Scholar 

  16. Newman, M.: Networks. Oxford University Press, New York (2018)

    Book  Google Scholar 

  17. Newman, M.E.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(3), 036104 (2006)

    Article  MathSciNet  Google Scholar 

  18. Panzarasa, P., Opsahl, T., Carley, K.M.: Patterns and dynamics of users’ behavior and interaction: network analysis of an online community. J. Am. Soc. Inform. Sci. Technol. 60(5), 911–932 (2009)

    Article  Google Scholar 

  19. Sumith, N., Annappa, B., Bhattacharya, S.: A holistic approach to influence maximization in social networks: STORIE. Appl. Soft Comput. J. 66, 533–547 (2018). https://doi.org/10.1016/j.asoc.2017.12.025

    Article  Google Scholar 

  20. Tang, J., et al.: Maximizing the spread of influence via the collective intelligence of discrete bat algorithm. Knowl.-Based Syst. 160, 88–103 (2018). https://doi.org/10.1016/j.knosys.2018.06.013

    Article  Google Scholar 

  21. Tong, G., et al.: Adaptive influence maximization in dynamic social networks. IEEE/ACM Trans. Networking 25(1), 112–125 (2017). https://doi.org/10.1109/TNET.2016.2563397

    Article  Google Scholar 

  22. Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33(4), 452–473 (1977)

    Article  Google Scholar 

  23. Zhang, K., Du, H., Feldman, M.W.: Maximizing influence in a social network: improved results using a genetic algorithm. Physica A (2017). https://doi.org/10.1016/j.physa.2017.02.067

    Article  Google Scholar 

  24. Zhang, L., Luo, M., Boncella, R.J.: Product information diffusion in a social network. Electron. Commer. Res. (2018). https://doi.org/10.1007/s10660-018-9316-9

Download references

Acknowledgement

This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS - UEFISCDI, project number PN-III-P1-1.1-TE-2016-1933.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noémi Gaskó .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Képes, T., Gaskó, N., Lung, R.I., Suciu, MA. (2019). Influence Maximization and Extremal Optimization. In: Pérez García, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodríguez, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2019. Lecture Notes in Computer Science(), vol 11734. Springer, Cham. https://doi.org/10.1007/978-3-030-29859-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29859-3_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29858-6

  • Online ISBN: 978-3-030-29859-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics