Abstract
Influence Extremal Optimization (InfEO) is an algorithm based on Extremal Optimization, adapted for the influence maximization problem for the independent cascade model. InfEO maximizes the marginal contribution of a node to the influence set of the model. Numerical experiments are used to compare InfEO with other influence maximization methods, indicating the potential of this approach. Practical results are discussed on a network constructed from publication data in the field of computer science.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
http://www.orgnet.com/divided2.html, accessed April, 2019.
- 2.
www.webofknowledge.com, accessed February, 2019.
- 3.
References
Berry, G., Cameron, C.J., Park, P., Macy, M.: The opacity problem in social contagion. Soc. Netw. 56, 93–101 (2019). https://doi.org/10.1016/j.socnet.2018.09.001
Boettcher, S., Percus, A.G.: Optimization with extremal dynamics. Complexity 8(2), 57–62 (2002)
Bucur, D.: Influence Maximization in Social Networks with Genetic Algorithms Influence Maximization in Social Networks with Genetic Algorithms, March 2016. https://doi.org/10.1007/978-3-319-31204-0
Bucur, D., Iacca, G., Marcelli, A., Squillero, G.: Multi-objective Evolutionary Algorithms for Influence Maximization in Social Networks Multi-Objective Evolutionary Algorithms for Influence Maximization in Social Networks, August 2017. https://doi.org/10.1007/978-3-319-55849-3
Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2009, pp. 199–208. ACM, New York (2009). https://doi.org/10.1145/1557019.1557047. http://doi.acm.org/10.1145/1557019.1557047
Domingos, P., Richardson, M.: Mining the network value of customers. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 57–66. ACM (2001)
Fan, X., Li, V.O.: The probabilistic maximum coverage problem in social networks. In: GLOBECOM - IEEE Global Telecommunications Conference (2011). https://doi.org/10.1109/GLOCOM.2011.6133985
Gao, J., Ghasemiesfeh, G., Schoenebeck, G., Yu, F.Y.: General threshold model for social cascades: analysis and simulations. In: EC 2016 - Proceedings of the 2016 ACM Conference on Economics and Computation, pp. 617–634 (2016). https://doi.org/10.1145/2940716.2940778
Gong, M., Yan, J., Shen, B., Ma, L., Cai, Q.: Influence maximization in social networks based on discrete particle swarm optimization. Inf. Sci. 367–368, 600–614 (2016). https://doi.org/10.1016/j.ins.2016.07.012
Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146. ACM (2003)
Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network, p. 137 (2004). https://doi.org/10.1145/956750.956769
Kuo, T.T., Hung, S.C., Lin, W.S., Lin, S.D., Peng, T.C., Shih, C.C.: Assessing the quality of diffusion models using real-world social network data. In: Proceedings - 2011 Conference on Technologies and Applications of Artificial Intelligence, TAAI 2011, pp. 200–205 (2011). https://doi.org/10.1109/TAAI.2011.42
Leung, T., Chung, F.L.: Persuasion driven influence propagation in social networks, pp. 548–554 (2014). https://doi.org/10.1109/ASONAM.2014.6921640. cited By 5
Liu, W., Chen, X., Jeon, B., Chen, L., Chen, B.: Influence maximization on signed networks under independent cascade model. Appl. Intell. 49(3), 912–928 (2019). https://doi.org/10.1007/s10489-018-1303-2
Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.: The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations. Behav. Ecol. Sociobiol. 54(4), 396–405 (2003)
Newman, M.: Networks. Oxford University Press, New York (2018)
Newman, M.E.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(3), 036104 (2006)
Panzarasa, P., Opsahl, T., Carley, K.M.: Patterns and dynamics of users’ behavior and interaction: network analysis of an online community. J. Am. Soc. Inform. Sci. Technol. 60(5), 911–932 (2009)
Sumith, N., Annappa, B., Bhattacharya, S.: A holistic approach to influence maximization in social networks: STORIE. Appl. Soft Comput. J. 66, 533–547 (2018). https://doi.org/10.1016/j.asoc.2017.12.025
Tang, J., et al.: Maximizing the spread of influence via the collective intelligence of discrete bat algorithm. Knowl.-Based Syst. 160, 88–103 (2018). https://doi.org/10.1016/j.knosys.2018.06.013
Tong, G., et al.: Adaptive influence maximization in dynamic social networks. IEEE/ACM Trans. Networking 25(1), 112–125 (2017). https://doi.org/10.1109/TNET.2016.2563397
Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33(4), 452–473 (1977)
Zhang, K., Du, H., Feldman, M.W.: Maximizing influence in a social network: improved results using a genetic algorithm. Physica A (2017). https://doi.org/10.1016/j.physa.2017.02.067
Zhang, L., Luo, M., Boncella, R.J.: Product information diffusion in a social network. Electron. Commer. Res. (2018). https://doi.org/10.1007/s10660-018-9316-9
Acknowledgement
This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS - UEFISCDI, project number PN-III-P1-1.1-TE-2016-1933.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Képes, T., Gaskó, N., Lung, R.I., Suciu, MA. (2019). Influence Maximization and Extremal Optimization. In: Pérez García, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodríguez, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2019. Lecture Notes in Computer Science(), vol 11734. Springer, Cham. https://doi.org/10.1007/978-3-030-29859-3_36
Download citation
DOI: https://doi.org/10.1007/978-3-030-29859-3_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29858-6
Online ISBN: 978-3-030-29859-3
eBook Packages: Computer ScienceComputer Science (R0)