Abstract
This work models the dynamics of time series fluctuations of patients with learning disorders, specifically with reading-writing problems, applying fractal geometry, rough interface growth theory and Artificial Intelligence. From the EEG of children diagnosed with reading-writing problems, we obtain data of the brain activity of these children with which time series of fluctuations (standard deviations, \(\upsilon \left( t,\tau \right) \)) for each of the 19 channels distributed in different regions of the cerebral cortex. The self-affinity of the time series of fluctuations (treated as interfaces in motion) is characterized by the scaling behavior of the structure functions by one hand \(\sigma \propto \left( \delta _{t}\right) ^{\zeta }\), with \(\zeta \) as the local or roughness exponent and the other hand \(\sigma \propto \left( \tau \right) ^{\beta }\), with \(\beta \) as the fluctuation growth exponent. These findings guide us to propose the existence of a dynamic scaling behavior similar to that of Family-Vicsek for the kinetic roughening of a moving interface. In addition these findings are implemented in an Internet of Things (IoT) Network.
Oswaldo Morales Matamoros, Jesús Jaime Moreno Escobar, Teresa Ivonne Contreras Troya, Ricardo Tejeida Padilla—Research Professor (Profesor Investigador)
Ixchel Lina Reyes—Ph.D. student (Estudiante de Doctorado).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sanders, E.A., Berninger, V.W., Abbott, R.D.: Sequential prediction of literacy achievement for specific learning disabilities contrasting in impaired levels of language in grades 4 to 9. J. Learn. Disabil. 51(2), 137–157 (2018). PMID: 28199175
Balankin, A.S.: Dynamic scaling approach to study time series fluctuations. Phys. Rev. E 76, 056120 (2007)
Chen, D., Wan, S., Xiang, J., Bao, F.S.: A high-performance seizure detection algorithm based on discrete wavelet transform (DWT) and EEG. PLoS ONE 12(3), e0173138 (2017)
Longcamp, M., Richards, T.L., Velay, J.L., Berninger, V.W.: Neuroanatomy of handwriting and related reading and writing skills in adults and children with and without learning disabilities: French-American connections. Pratiques 177–178, 171–181 (2016)
Richards, T., Pettet, M., Askren, M., Mestre, Z., Grabowski, T., Yagle, K., Wallis, P., Northey, M., Abbott, R., Berninger, V.: ERPs while judging meaningfulness of sentences with and without homonym or morpheme spelling foils: comparing 4th to 9th graders with and without spelling disabilities. Dev. Neuropsychol 42(4), 284–297 (2017). PMID: 28657362
Balankin, A.S., Paredes, R.G., Susarrey, O., Morales, D., Castrejon, F.: Kinetic roughening and pinning of two coupled interfaces in disordered media. Phys. Rev. Lett. 96(5–10), 101–104 (2006)
Pollack, C., Luk, G., Christodoulou, J.A.: A meta-analysis of functional reading systems in typically developing and struggling readers across different alphabetic languages. Front. Psychol. 6, 191–201 (2015)
Van der Lubbe, R.H.J., Szumska, I., Fajkowska, M.: Two sides of the same coin: ERP and wavelet analyses of visual potentials evoked and induced by task-relevant faces. Adv. Cogn. Psychol. 12(4), 154–168 (2016)
Stipdonk, L.W., Franken, M.C.J.P., Dudink, J.: Language outcome related to brain structures in school-aged preterm children: a systematic review. PLoS ONE 13(6), 1–15 (2018)
Wessel, K., Suleiman, J., Khalaf, T.E., Kishore, S., Rolfs, A., El-Hattab, A.W.: 17q23.2q23.3 de novo duplication in association with speech and language disorder, learning difficulties, incoordination, motor skill impairment, and behavioral disturbances: a case report. BMC Med. Genet. 18(1), 119–123 (2017)
Tahir, M., Sword, C., Feldman, M.: Evaluation of a game-based parent education intervention to increase positive parent–child interactions in parents with learning difficulties. Asoc. Am. Psicol. 15(3–4), 187–200 (2015)
Francois, C. (ed.): International Encyclopedia of Systems and Cybernetics. München K G Saur Verlag (2004)
Adamczyk, M., Genzel, L., Dresler, M., Steiger, A., Friess, E.: Automatic sleep spindle detection and genetic influence estimation using continuous wavelet transform. Front. Hum. Neurosci. 9, 624–643 (2015)
Maassen, B.A.M., Mansvelder, H.D., Van der Leij, A., Van Zuijen, T.L., Schiavone, G., Linkenkaer-Hansen, K., Maurits, N.M., Plakas, A.: Preliteracy signatures of poor-reading abilities in resting-state EEG. Front. Hum. Neurosci. 8, 735–746 (2014)
Géza, O.: Universality classes in nonequilibrium lattice systems. Rev. Mod. Phys. 76(3), 663–724 (2004)
Hassan, T., Aslam, S., Jang, J.W.: Fully automated multi-resolution channels and multithreaded spectrum allocation protocol for IoT based sensor nets. IEEE Access 6, 22545–22556 (2018)
Bachmann, M., Lass, J., Suhhova, A., Hinrikus, H.: Spectral asymmetry and higuchi’s fractal dimension measures of depression electroencephalogram. Comput. Math. Methods Med. 2013, 8 (2013)
Bartsch, R.P., Schumann, A.Y., Kantelhardt, J.W., Penzel, T., Ivanov, P.C.: Phase transitions in physiologic coupling. Proc. Nat. Acad. Sci. 109(26), 10181–10186 (2012)
Jo, O., Kim, Y.K., Kim, J.: Internet of Things for smart railway: feasibility and applications. IEEE Internet Things J. 5(2), 482–490 (2018)
Kuhnhold, A., Schumann, A.Y., Bartsch, R., Schmidt, G., Kantelhardt, J.: Cardio-respiratory phase synchronization from reconstructed respiration. In: Proceedings of the 6th Conference of the European Study Group on Cardiovascular Oscillations, pp.14–16, January 2010
Schumann, A.Y., Bartsch, R.P., Penzel, T., Ivanov, P.C., Kantelhardt, J.W.: Aging effects on cardiac and respiratory dynamics in healthy subjects across sleep stages. Sleep 33(7), 943–955 (2010)
Schumann, A.Y., Kuhnhold, A., Bartsch, R., Fuchs, K., Bauer, A., Schmidt, G., Kantelhardt, J.W.: Reconstructed respiration and cardio-respiratory phase synchronization in post-infarction patients. In: Proceedings of the 6th Conference of the European Study Group on Cardiovascular Oscillations, vol. 053, January 2010
Fuchs, K., Schumann, A.Y., Kuhnhold, A., Przemyslaw, G., Piskorski, J., Scmidt, G., Kantelhardt, J.W.: Comparing analysis of heart rate and blood pressure fluctuations in healthy subjects. In: Proceedings of the 6th Conference of the European Study Group on Cardiovascular Oscillations, January 2010
Laasonen, M., Smolander, S., Lahti-Nuuttila, P.: Understanding developmental language disorder - the helsinki longitudinal sli study (helsli): a study protocol. BMC Psychol. 6(1), 24 (2018)
Kang, J.G., Lee, S.H., Park, E.J., Leem, H.S.: Event-related potential patterns reflect reversed hemispheric activity during visual attention processing in children with dyslexia: a preliminary study. Clin. Psychopharmacol. Neurosci. 14(1), 33–42 (2016)
Leonard, L.B.: Niños con impedimentos específicos del lenguaje y su contribución al estudio del desarrollo del lenguaje. J. Child Lang. 41(S1), 38–47 (2014)
Li, T., Yuan, J., Torlak, M.: Network throughput optimization for random access narrowband cognitive radio Internet of Things (NB-CR-IoT). IEEE Internet Things J. 5(3), 1436–1448 (2018)
Márton, L.F., Brassai, S.T., Bakó, L., Losonczi, L.: Detrended fluctuation analysis of EEG signals. Proc. Technol. 12, 125–132 (2014). The 7th International Conference Interdisciplinarity in Engineering, INTER-ENG 2013, 10–11 October 2013, Petru Maior University of Tirgu Mures, Romania
Britton, J.W., Frey, L.C., Hopp, J.L., Korb, P., Koubeissi, M.Z., Lievens, W.E., Pestana-Night, E.M., St. Louis, E.K.: Electroencephalography an introductory text and atlas of normal findings in adults, children and infants. American Epilepsy Society (2016)
Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H. Freeman & Co Ltd., November 1982
Meakin, P.: Fractals, Scaling and Growth Far from Equilibrium. 1st edn. Cambridge University Press, January 1998
Miguelez, M.M.: Epistemologia Y Metodologia Cualitativa En Las Ciencias. Editorial Trillas, 1st edn. (2013)
Melgarejo, M., Obregon, N.: Multifractal approach to the analysis of crime dynamics: results for burglary in San Francisco. Fractals 25(5), 1750043 (2017)
OMS: Clasificación internacional de enfermedadesy problemas relacionados con la salud. OMS, 11 edn. June 2018
Kantelhardt, J.W., Tismer, S., Gans, F., Schumann, A.Y., Penzel, T.: Scaling behavior of EEG amplitude and frequency time series across sleep stages. EPL (Europhys. Lett.) 112(1), 18001 (2015)
Conti-Ramsden, G., Durkin, K., Toseeb, U., Botting, N., Pickles, A.: Education and employment outcomes of young adults with a history of developmental language disorder. Int. J. Lang. Commun. Disord. 53(2), 237–255 (2018)
Bigozzi, L., Tarchi, C., Caudek, C., Pinto, G.: Predicting reading and spelling disorders: a 4-year prospective cohort study. Front. Psychol. 7, 337–348 (2016)
Balankin, A., Matamoros, O., Gálvez, E., Pérez, A.: Crossover from antipersistent to persistent behavior in time series possessing the generalyzed dynamic scaling law. Phys. Rev. E 69, 036121 (2004)
De Queiroz, S.L.A.: Roughness of time series in a critical interface model. Phys. Rev. E 72(6), 104–110 (2005)
Salum-Fares, A., Reséndiz-Balderas, E.: Efectividad de un programa de intervención eductativa para la mejora del autoconcpeto en el ámbito escolar. Revista Mexicana de Psicología Educativa 3(1), 23–37 (2015)
Roca-Stappung, M., Fernández, T., Bosch-Bayard, J., Harmony, T., Ricardo-Garcell, J.: Electroencephalographic characterization of subgroups of children with learning disorders. PLoS ONE 12(7), 1–12 (2017)
Ramasco, J., López, J.M., Rodríguez, M.A.: Generic dynamic scaling in kinetic roughening. Phys. Rev. Lett. 84(10), 2199–2202 (2000)
Sandoval, R.M., Garcia-Sanchez, A.J., Garcia-Haro, J.: Improving RSSI-based path-loss models accuracy for critical infrastructures: a smart grid substation case-study. IEEE Trans. Ind. Inf. 14(5), 2230–2240 (2018)
Constantin, M., Das Sarma, S.: Volatility, persistence, and survival in financial markets. Phys. Rev. E, 72(5), 106–116 (2005)
Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. 2 edn. Cambridge University Press (2003)
Sharma, P.K., Chen, M.Y., Park, J.H.: A software defined fog node based distributed blockchain cloud architecture for IoT. IEEE Access 6, 115–124 (2018)
Morken, F., Helland, T., Hugdahl, K., Specht, K.: Children with dyslexia show cortical hyperactivation in response to increasing literacy processing demands. Front. Psychol. 5, 1491–1504 (2014)
Barabasi, A.L., Stanley, H.E.: Fractal Concepts in Surface Growth. Cambridge University Press (1995)
Stanley, H.E.: Fractal landscapes in physics and biology. Phys. A 186(1), 1–32 (1992)
Stanley, H.E.: Introduction to Phase Transitions and Critical Phenomena. Oxford University Press, July 1987
Ashkenazy, Y., Ivanov, P.C., Havlin, S., Peng, C.-K., Goldberger, A. Stanley, H.E.: Correlaciones de magnitud y signo en fluctuaciones de latido delcorazón. Phys. Rev. Lett., 86(9), 1900–1903 (2001)
Taghizadeh, S., Bobarshad, H., Elbiaze, H.: CLRPL: context-aware and load balancing RPL for IoT networks under heavy and highly dynamic load. IEEE Access 6, 23277–23291 (2018)
Zappasodi, F., Olejarczyk, E., Marzetti, L., Assenza, G., Pizzella, V., Tecchio, F.: Fractal dimension of EEG activity senses neuronal impairment in acute stroke. PLoS ONE 9(6), 1–8 (2014)
Torrano, M.L.: Del 3 al 5% de niños en méxico padece problemas en desarrollo temprano: Especialista. July 2015
Kantelhardt, J.W., Gans, F., Schumann, A.Y., Penzel, T.: EEG cross- modulation during sleep and wake. In: Proceedings of the 6th Conference of the European Study Group on Cardiovascular Oscillations, July 2010
Penzel, T., Kantelhardt, J.W., Lo, C.C., Voigt, K., Vogelmeier, C.: Dynamics of heart rate and sleep stages in normals and patients with sleep apnea. Neuropsychopharmacology 28(48), 48–53 (2003)
Zhang, C., Ge, J., Pan, M., Gong, F., Men, J.: One stone two birds: a joint thing and relay selection for diverse IoT networks. IEEE Trans. Veh. Technol. 67(6), 5424–5434 (2018)
Acknowledgment
This article is supported by National Polytechnic Institute (Instituto Poliécnico Nacional) of Mexico by means of Projects No. 20195208 and 20190046 granted by Secretariat of Graduate and Research, National Council of Science and Technology of Mexico (CONACyT). The research described in this work was carried out at the Superior School of Mechanical and Electrical Engeniering (Escuela Superior de Ingeniería Mecánica y Eléctrica) Campus Zacatenco in colboration with the UAEM University Center Campus Ecatepec (Centro Universitario UAEM Ecatepec). In addition, the authors thank to Dr. Daniel Morales Matamoros for his contributions regarding the kinetic theory of rough interfaces and to Dr. Alejandra Fávila for providing data on electroencephalograms applied to children with learning disorders. It should be noted that part of the results of this work was carried out by Doctoral students Ixchel Lina and Erika Aguilar.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Matamoros, O.M., Escobar, J.J.M., Reyes, I.L., Troya, T.I.C., Padilla, R.T. (2020). Dynamic Scaling of EEG Fluctuations of Patients with Learning Disorders Based on Artificial Intelligence. In: Bi, Y., Bhatia, R., Kapoor, S. (eds) Intelligent Systems and Applications. IntelliSys 2019. Advances in Intelligent Systems and Computing, vol 1038. Springer, Cham. https://doi.org/10.1007/978-3-030-29513-4_49
Download citation
DOI: https://doi.org/10.1007/978-3-030-29513-4_49
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29512-7
Online ISBN: 978-3-030-29513-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)