Hybrid Binary Particle Swarm Optimization and Flower Pollination Algorithm Based on Rough Set Approach for Feature Selection Problem | SpringerLink
Skip to main content

Hybrid Binary Particle Swarm Optimization and Flower Pollination Algorithm Based on Rough Set Approach for Feature Selection Problem

  • Chapter
  • First Online:
Nature-Inspired Computation in Data Mining and Machine Learning

Part of the book series: Studies in Computational Intelligence ((SCI,volume 855))

Abstract

In this chapter, we suggest a hybrid binary algorithm, namely, binary particle swarm optimization (PSO) with flower pollination algorithm (FPA), and call it by BPSOFPA. In BPSOFPA, PSO performs as a global search and flower pollination algorithm (FPA) conducts a fine-tuned search. We introduce the binary version of the hybridization between PSO and FPA, to solve binary problems, in particular, feature selection (FS) problem. In general, the binary algorithm relies on the so-called transfer function In this study two of the transfer functions (namely, S-shaped and V-shaped) are introduced and evaluated. We test the suggested algorithm BPSOFPA on 18 well-known benchmark UCI datasets to check its performance. The performance of our suggested algorithm is more acceptable than other pertinent works including the traditional version of the binary optimization algorithm. The results show that the suggested V-shaped family of transfer functions enhances the performance of the standard binary PSO and FPA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11(5), 341–356 (1982)

    Article  MATH  Google Scholar 

  2. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht, The Netherlands (1991)

    Chapter  Google Scholar 

  3. Pawlak, Z.: Rough set approach to knowledge-based decision support. Eur. J. Oper. Res. 99(1), 48–57 (1997)

    Article  MATH  Google Scholar 

  4. Prasad, V., Rao, T.S., Babu, M.S.P.: Thyroid disease diagnosis via hybrid architecture composing rough data sets theory and machine learning algorithms. Soft Comput. 20(3), 1179–1189 (2016)

    Article  Google Scholar 

  5. Podsiadło, M., Rybiński, H.: Rough sets in economy and finance. In: Transactions on Rough Sets XVII, pp. 109–173. Springer (2014)

    Google Scholar 

  6. Maciá-Pérez, F., Berna-Martinez, J.V., Oliva, A.F., Ortega, M.A.A.: Algorithm for the detection of outliers based on the theory of rough sets. Decis. Support Syst. 75, 63–75 (2015)

    Article  Google Scholar 

  7. Montazer, G.A., ArabYarmohammadi, S.: Detection of phishing attacks in iranian e-banking using a fuzzy-rough hybrid system. Appl. Soft Comput. 35, 482–492 (2015)

    Article  Google Scholar 

  8. Xie, C.-H., Liu, Y.-J., Chang, J.-Y.: Medical image segmentation using rough set and local polynomial regression. Multimedia Tools Appl. 74(6), 1885–1914 (2015)

    Article  Google Scholar 

  9. Pal, S.K., Skowron, A.J.: Rough-Fuzzy Hybridization: A New Trend in Decision Making. Springer, New York (1999)

    Google Scholar 

  10. Liu, H., Motoda, H.: Feature Extraction, Construction and Selection: A Data Mining Perspective. vol. 453. Springer (1998)

    Google Scholar 

  11. Hu, K., Lu, Y., Shi, C.: Feature ranking in rough sets. AI Commun. 16(1), 41–50 (2003)

    MATH  Google Scholar 

  12. Chang, Chieng-Yi: Dynamic programming as applied to feature subset selection in a pattern recognition system. IEEE Trans. Syst. Man Cybern. 2, 166–171 (1973)

    Article  MATH  Google Scholar 

  13. Wayne Whitney, A.: A direct method of nonparametric measurement selection. IEEE Trans. Comput. 100(9), 1100–1103 (1971)

    Article  MATH  Google Scholar 

  14. Modrzejewski, M.: Feature selection using rough sets theory. In: European Conference on Machine Learning, pp. 213–226. Springer (1993)

    Google Scholar 

  15. Marill, T., Green, D.: On the effectiveness of receptors in recognition systems. IEEE Trans. Inf. Theory 9(1), 11–17 (1963)

    Article  Google Scholar 

  16. Xue, B., Zhang, M., Browne, W.N.: Particle swarm optimization for feature selection in classification: a multi-objective approach. IEEE Trans. Cybern. 43(6), 1656–1671 (2013)

    Article  Google Scholar 

  17. Daolio, F., Liefooghe, A., Verel, S., Aguirre, H., Tanaka, K.: Global versus local search on multi-objective NK-landscapes: contrasting the impact of problem features. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 369–376. ACM (2015)

    Google Scholar 

  18. Hedar, A., Ibrahim, A.M., Abdel-Hakim, A.E., Sewisy, A.A.: K-means cloning: adaptive spherical k-means clustering. Algorithms 11(10) (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dorigo, M., Blum, C.: Ant colony optimization theory: a survey. Theor. Comp. Sci. 344(2–3), 243–278 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hedar, A., Ibrahim, A.M., Abdel-Hakim, A.E., Sewisy, A.A.: Modulated clustering using integrated rough sets and scatter search attribute reduction. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO’18, pp. 1394–1401. ACM, New York, NY, USA (2018)

    Google Scholar 

  21. Davies, S., Russell, S.: NP-completeness of searches for smallest possible feature sets. In: Proceedings of the 1994 AAAI Fall Symposium on Relevance, vol. 37, p. 39. AAAI Press (1994)

    Google Scholar 

  22. Zhai, L.-Y., Khoo, L.-P., Fok, S.-C.: Feature extraction using rough set theory and genetic algorithms? An application for the simplification of product quality evaluation. Comput. Ind. Eng. 43(4), 661–676 (2002)

    Article  Google Scholar 

  23. Wang, X., Yang, J., Teng, X., Xia, W., Jensen, R.: Feature selection based on rough sets and particle swarm optimization. Pattern Recogn. Lett. 28(4), 459–471 (2007)

    Article  Google Scholar 

  24. Bae, C., Yeh, W.-C., Chung, Y.Y., Liu, S.-L.: Feature selection with intelligent dynamic swarm and rough set. Expert Syst. Appl. 37(10), 7026–7032 (2010)

    Article  Google Scholar 

  25. Inbarani, H.H., Azar, A.T., Jothi, G.: Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis. Comput. Methods Programs Biomed. 113(1), 175–185 (2014)

    Article  Google Scholar 

  26. Chen, Y., Miao, D., Wang, R.: A rough set approach to feature selection based on ant colony optimization. Pattern Recogn. Lett. 31(3), 226–233 (2010)

    Article  Google Scholar 

  27. Jensen, R., Shen, Q.: Fuzzy-rough data reduction with ant colony optimization. Fuzzy Sets Syst. 149(1), 5–20 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ke, L., Feng, Z., Ren, Z.: An efficient ant colony optimization approach to attribute reduction in rough set theory. Pattern Recogn. Lett. 29(9), 1351–1357 (2008)

    Article  Google Scholar 

  29. El Aziz, M.A., Hassanien, A.E: Modified cuckoo search algorithm with rough sets for feature selection. Neural Comput. Appl. 29(4), 925–934 (2018)

    Article  Google Scholar 

  30. Tawhid, M.A., Dsouza, K.B.: Hybrid binary bat enhanced particle swarm optimization algorithm for solving feature selection problems. Appl. Comput. Inf. (2018)

    Google Scholar 

  31. Tawhid, M.A., Dsouza, K.B.: Hybrid binary dragonfly enhanced particle swarm optimization algorithm for solving feature selection problems. Math. Found. Comput., 1(2), 181–200 (2018)

    Google Scholar 

  32. Chen, Y., Zeng, J., Lu, Z.: Neighborhood rough set reduction with fish swarm algorithm. Soft Comput. 21(23), 6907–6918 (2017)

    Article  Google Scholar 

  33. Yamany, W., Emary, E., Hassanien, A.E.: New rough set attribute reduction algorithm based on grey wolf optimization. In: The 1st International Conference on Advanced Intelligent System and Informatics (AISI2015), 28–30 November 2015, Beni Suef, Egypt, pp. 241–251. Springer (2016)

    Google Scholar 

  34. Chen, Y., Zhu, Q., Xu, H.: Finding rough set reducts with fish swarm algorithm. Knowl.-Based Sys. 81, 22–29 (2015)

    Article  Google Scholar 

  35. Yamany, W., Emary, E., Hassanien, A.E., Schaefer, G., Zhu, S.Y.: An innovative approach for attribute reduction using rough sets and flower pollination optimisation. Procedia Comput. Sci. 96, 403–409 (2016)

    Article  Google Scholar 

  36. Luan, X.-Y., Li, Z.-P., Liu, T.-Z.: A novel attribute reduction algorithm based on rough set and improved artificial fish swarm algorithm. Neurocomputing 174, 522–529 (2016)

    Article  Google Scholar 

  37. Yang, X.-S.: Flower pollination algorithm for global optimization. In: Durand-Lose J., Jonoska, N. (eds.) Unconventional Computation and Natural Computation, pp. 240–249. Springer, Berlin, Heidelberg (2012)

    Chapter  Google Scholar 

  38. Goyal, S., Patterh, M.S.: Flower pollination algorithm based localization of wireless sensor network. In: 2015 2nd International Conference on Recent Advances in Engineering & Computational Sciences (RAECS), pp. 1–5. IEEE (2015)

    Google Scholar 

  39. Kaur, R., Arora, S.: Nature inspired range based wireless sensor node localization algorithms. Int. J. Interact. Multimedia Artif. Intell. 4(6), 7–17 (2017)

    Google Scholar 

  40. Wang, R., Zhou, Y., Zhao, C., Wu, H.: A hybrid flower pollination algorithm based modified randomized location for multi-threshold medical image segmentation. Bio-Med. Mater. Eng. 26(s1), S1345–S1351 (2015)

    Article  Google Scholar 

  41. Ouadfel, S., Taleb-Ahmed, A.: Social spiders optimization and flower pollination algorithm for multilevel image thresholding: a performance study. Expert Syst. Appl. 55, 566–584 (2016)

    Article  Google Scholar 

  42. Fouad, A., Gao, X.: A novel modified flower pollination algorithm for global optimization. Neural Comput. Appl. 1–34 (2018)

    Google Scholar 

  43. Nabil, E.: A modified flower pollination algorithm for global optimization. Expert Syst. Appl. 57, 192–203 (2016)

    Article  Google Scholar 

  44. Shilaja, C., Ravi, K.: Optimization of emission/economic dispatch using Euclidean affine flower pollination algorithm (EFPA) and binary FPA (BFPA) in solar photo voltaic generation. Renew. Energy 107, 550–566 (2017)

    Article  Google Scholar 

  45. Abdelaziz, A.Y., Ali, E.S., Elazim, S.M.A.: Flower pollination algorithm to solve combined economic and emission dispatch problems. Eng. Sci. Technol. Int. J. 19(2), 980–990 (2016)

    Article  Google Scholar 

  46. Rodrigues, D., Yang, A.N., De Souza, X., Papa, J.P.: Binary flower pollination algorithm and its application to feature selection. In: Recent Advances in Swarm Intelligence and Evolutionary Computation, pp. 85–100. Springer (2015)

    Google Scholar 

  47. Sayed, S.A., Nabil, E., Badr, A.: A binary clonal flower pollination algorithm for feature selection. Pattern Recogn. Lett. 77, 21–27 (2016)

    Article  Google Scholar 

  48. Abdel-Baset, M., Wu, H., Zhou, Y.: A complex encoding flower pollination algorithm for constrained engineering optimisation problems. Int. J. Math. Model. Numer. Optim. 8(2), 108–126 (2017)

    Google Scholar 

  49. Alkareem Alyasseri, Z.A., Tajudin Khader, A., Al-Betar, M.A., Awadallah, M.A., Yang X., Variants of the flower pollination algorithm: a review. In: Nature-Inspired Algorithms and Applied Optimization, pp. 91–118. Springer (2018)

    Google Scholar 

  50. Kayabekir, A.E., Bekdaş, G., Nigdeli, S.M., Yang, X.: A comprehensive review of the flower pollination algorithm for solving engineering problems. In: Nature-Inspired Algorithms and Applied Optimization, pp 171–188. Springer (2018)

    Google Scholar 

  51. Abdel-Basset, M., Shawky, L.A.: Flower pollination algorithm: a comprehensive review. Artif. Intell. Rev. 1–25 (2018)

    Google Scholar 

  52. Mirjalili, S., Lewis, A.: S-shaped versus v-shaped transfer functions for binary particle swarm optimization. Swarm Evol. Comput. 9, 1–14 (2013)

    Article  Google Scholar 

  53. Rodrigues, D., Yang, X.-S., de Souza, A.N., Papa, J.P.: Binary Flower Pollination Algorithm and Its Application to Feature Selection, pp. 85–100. Springer, Cham (2015)

    Google Scholar 

  54. Emarya, E., Zawbaa, H.M., Hassanien, A.E.: Binary grey wolf optimization approaches for feature selection. Neurocomputing 172, 371–381 (2016)

    Article  Google Scholar 

  55. Mirjalili, S., Wang, G.-G., Coelho, L.D.S.: Binary optimization using hybrid particle swarm optimization and gravitational search algorithm. Neural Comput. Appl. 25(6), 1423–1435 (2014)

    Article  Google Scholar 

  56. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE Publications (1995)

    Google Scholar 

  57. Esmin, A.A.A., Coelho, R.A., Matwin, S.: A review on particle swarm optimization algorithm and its variants to clustering high-dimensional data. Artif. Intell. Rev. 44(1) 23–45 (2015)

    Article  Google Scholar 

  58. Manish, S.: Rough-fuzzy functions in classification. Fuzzy Sets Syst. 132, 353–369 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  59. Yumin, C., Duoqian, M., Ruizhi, W.: A rough set approach to feature selection based on ant colony optimization. Pattern Recogn. Lett. 31(3), 226–233 (2010)

    Google Scholar 

  60. Wang, J., Hedar, A., Zheng, G., Wang, S.: Scatter search for rough set attribute reduction. In: International Joint Conference on Computational Sciences and Optimization, 2009. CSO 2009, vol. 1, pp. 531–535. IEEE (2009)

    Google Scholar 

  61. Chen, Y., Miao, D., Wang, R., Wu, K.: A rough set approach to feature selection based on power set tree. Knowl.-Based Syst. 24(2), 275–281 (2011)

    Article  Google Scholar 

  62. Inbarani, H.H., Bagyamathi, M., Azar, A.T.: A novel hybrid feature selection method based on rough set and improved harmony search. Neural Comput. Appl. 26(8), 1859–1880 (2015)

    Article  Google Scholar 

  63. Jensen, R., Shen, Q.: Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches. IEEE Trans. Knowl. Data Eng. 16(12), 1457–1471 (2004)

    Article  Google Scholar 

  64. Swiniarski, R.W., Skowron, A.: Rough set methods in feature selection and recognition. Pattern Recogn. Lett. 24(6), 833–849 (2003)

    Article  MATH  Google Scholar 

  65. Frank, A., Asuncion, A.: UCI machine learning repository (2010)

    Google Scholar 

  66. Jue, W., Qi, Z., Hedar, A., Ibrahim, A.M.: A rough set approach to feature selection based on scatter search metaheuristic. J. Syst. Sci. Complex. 27(1), 157–168 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  67. Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. Tawhid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tawhid, M.A., Ibrahim, A.M. (2020). Hybrid Binary Particle Swarm Optimization and Flower Pollination Algorithm Based on Rough Set Approach for Feature Selection Problem. In: Yang, XS., He, XS. (eds) Nature-Inspired Computation in Data Mining and Machine Learning. Studies in Computational Intelligence, vol 855. Springer, Cham. https://doi.org/10.1007/978-3-030-28553-1_12

Download citation

Publish with us

Policies and ethics