Advanced Behavioral Analyses Using Inferred Social Networks: A Vision | SpringerLink
Skip to main content

Advanced Behavioral Analyses Using Inferred Social Networks: A Vision

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2019)

Abstract

The success of many businesses is based on a thorough knowledge of their clients. There exists a number of supervised as well as unsupervised data mining or other approaches that allow to analyze data about clients, their behavior or environment. In our ongoing project focusing primarily on bank clients, we propose an innovative strategy that will overcome shortcomings of the existing methods. From a given set of user activities, we infer their social network in order to analyze user relationships and behavior. For this purpose, not just the traditional direct facts are incorporated, but also relationships inferred using similarity measures and statistical approaches, with both possibly limited measures of reliability and validity in time. Such networks would enable analyses of client characteristics from a new perspective and could provide otherwise impossible insights. However, there are several research and technical challenges making the outlined pursuit novel, complex and challenging as we outline in this vision paper.

This work was supported in part by the Technology Agency of the Czech Republic (TAČR) project number TH03010276 and by Czech Science Foundation (GAČR) project number 19-01641S.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Instead of fully materialized matrices approximations can be used.

References

  1. Ang, J.C., Mirzal, A., Haron, H., Hamed, H.N.A.: Supervised, unsupervised, and semi-supervised feature selection: a review on gene selection. IEEE/ACM Trans. Comput. Biol. Bioinform. 13(5), 971–989 (2016). https://doi.org/10.1109/TCBB.2015.2478454

    Article  Google Scholar 

  2. Baesens, B., Vlasselaer, V.V., Verbeke, W.: Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques: A Guide to Data Science for Fraud Detection, 1st edn. Wiley, Hoboken (2015)

    Book  Google Scholar 

  3. Cai, L., Zhu, Y.: The challenges of data quality and data quality assessment in the big data era. Data Sci. J. 14(2), 1–10 (2015). https://doi.org/10.5334/dsj-2015-002

    Article  Google Scholar 

  4. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. In: Frey, H., Li, X., Ruehrup, S. (eds.) ADHOC-NOW 2011. LNCS, vol. 6811, pp. 346–359. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22450-8_27

    Chapter  Google Scholar 

  5. Cattuto, C., Quaggiotto, M., Panisson, A., Averbuch, A.: Time-varying social networks in a graph database: a Neo4j use case. In: First International Workshop on Graph Data Management Experiences and Systems, GRADES 2013, pp. 11:1–11:6. ACM, New York (2013). https://doi.org/10.1145/2484425.2484442

  6. Čech, P., Maroušek, J., Lokoč, J., Silva, Y.N., Starks, J.: Comparing mapreduce-based k-NN similarity joins on hadoop for high-dimensional data. In: Cong, G., Peng, W.-C., Zhang, W.E., Li, C., Sun, A. (eds.) ADMA 2017. LNCS (LNAI), vol. 10604, pp. 63–75. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69179-4_5

    Chapter  Google Scholar 

  7. Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40(1), 16–28 (2014). https://doi.org/10.1016/j.compeleceng.2013.11.024

    Article  Google Scholar 

  8. Chen, W., Lakshmanan, L.V., Castillo, C.: Information and Influence Propagation in Social Networks. Synthesis Lectures on Data Management, vol. 5, no. 4, pp. 1–177 (2013). https://doi.org/10.2200/S00527ED1V01Y201308DTM037

    Article  Google Scholar 

  9. Date, C.J., Darwen, H., Lorentzos, N.A.: Temporal Data and the Relational Model. Elsevier, Amsterdam (2002)

    Google Scholar 

  10. Dy, J.G., Brodley, C.: Feature subset selection and order identification for unsupervised learning. In: Proceedings of the Seventeenth International Conference on Machine Learning, October 2000

    Google Scholar 

  11. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)

    Article  Google Scholar 

  12. Islam, S.R., Eberle, W., Ghafoor, S.K.: Mining bad credit card accounts from OLAP and OLTP. CoRR abs/1807.00819 (2018). http://arxiv.org/abs/1807.00819

  13. Katal, A., Wazid, M., Goudar, R.H.: Big data: issues, challenges, tools and good practices. In: 2013 Sixth International Conference on Contemporary Computing (IC3), pp. 404–409, August 2013. https://doi.org/10.1109/IC3.2013.6612229

  14. Kirchner, C., Gade, J.: Implementing social network analysis for fraud prevention (2011)

    Google Scholar 

  15. Kwon, O., Lee, N., Shin, B.: Data quality management, data usage experience and acquisition intention of big data analytics. Int. J. Inf. Manag. 34(3), 387–394 (2014). https://doi.org/10.1016/j.ijinfomgt.2014.02.002

    Article  Google Scholar 

  16. Lessmann, S., Baesens, B., Seow, H., Thomas, L.C.: Benchmarking state-of-the-art classification algorithms for credit scoring: an update of research. Eur. J. Oper. Res. 247(1), 124–136 (2015). https://doi.org/10.1016/j.ejor.2015.05.030

    Article  MATH  Google Scholar 

  17. Lin, M., Prabhala, N.R., Viswanathan, S.: Judging borrowers by the company they keep: friendship networks and information asymmetry in online peer-to-peer lending. Manag. Sci. 59(1), 17–35 (2013). https://doi.org/10.1287/mnsc.1120.1560

    Article  Google Scholar 

  18. Liu, H., Yu, L.: Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowl. Data Eng. 4, 491–502 (2005)

    Google Scholar 

  19. Lookman, S., Nurcan, S.: A framework for occupational fraud detection by social network analysis. In: Proceedings of the CAiSE 2015 Forum at the 27th International Conference on Advanced Information Systems Engineering co-located with (CAiSE 2015), Stockholm, Sweden, 10 June 2015, pp. 221–228 (2015). http://ceur-ws.org/Vol-1367/paper-29.pdf

  20. Nai, L., Xia, Y., Tanase, I.G., Kim, H., Lin, C.: GraphBIG: understanding graph computing in the context of industrial solutions. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2015, pp. 1–12, November 2015. https://doi.org/10.1145/2807591.2807626

  21. Ngai, E.W.T., Hu, Y., Wong, Y.H., Chen, Y., Sun, X.: The application of data mining techniques in financial fraud detection: a classification framework and an academic review of literature. Decis. Support Syst. 50(3), 559–569 (2011). https://doi.org/10.1016/j.dss.2010.08.006

    Article  Google Scholar 

  22. Ozsoyoglu, G., Snodgrass, R.T.: Temporal and real-time databases: a survey. IEEE Trans. Knowl. Data Eng. 7(4), 513–532 (1995). https://doi.org/10.1109/69.404027

    Article  Google Scholar 

  23. Quah, J.T.S., Sriganesh, M.: Real-time credit card fraud detection using computational intelligence. Expert Syst. Appl. 35(4), 1721–1732 (2008). https://doi.org/10.1016/j.eswa.2007.08.093

    Article  Google Scholar 

  24. Santoro, N., Quattrociocchi, W., Flocchini, P., Casteigts, A., Amblard, F.: Time-varying graphs and social network analysis: temporal indicators and metrics. In: 3rd AISB Social Networks and Multiagent Systems Symposium (SNAMAS), United Kingdom, pp. 32–38, May 2011. https://hal.archives-ouvertes.fr/hal-00854313

  25. Singh, D.K., Patgiri, R.: Big graph: tools, techniques, issues, challenges and future directions. In: Sixth International Conference on Advances in Computing and Information Technology (ACITY 2016), pp. 119–128 (2016)

    Google Scholar 

  26. Tang, J., Alelyani, S., Liu, H.: Feature selection for classification: a review. In: Data Classification: Algorithms and Applications (2014)

    Google Scholar 

  27. Vlasselaer, V.V., et al.: APATE: a novel approach for automated credit card transaction fraud detection using network-based extensions. Decis. Support Syst. 75, 38–48 (2015). https://doi.org/10.1016/j.dss.2015.04.013

    Article  Google Scholar 

  28. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1225–1234. ACM (2016)

    Google Scholar 

  29. Xia, Y., et al.: Graph analytics and storage. In: 2014 IEEE International Conference on Big Data (Big Data), pp. 942–951, October 2014. https://doi.org/10.1109/BigData.2014.7004326

  30. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search - The Metric Space Approach. Advances in Database Systems, vol. 32. Kluwer, Dordrecht (2006). https://doi.org/10.1007/0-387-29151-2

    Book  MATH  Google Scholar 

  31. Zhou, J.: Data mining for individual consumer credit default prediction under e-commence context: a comparative study. In: Proceedings of the International Conference on Information Systems - Transforming Society with Digital Innovation, ICIS 2017, Seoul, South Korea, 10–13 December 2017 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Svoboda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Holubová, I., Svoboda, M., Skopal, T., Bernhauer, D., Peška, L. (2019). Advanced Behavioral Analyses Using Inferred Social Networks: A Vision. In: Anderst-Kotsis, G., et al. Database and Expert Systems Applications. DEXA 2019. Communications in Computer and Information Science, vol 1062. Springer, Cham. https://doi.org/10.1007/978-3-030-27684-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27684-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27683-6

  • Online ISBN: 978-3-030-27684-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics