Abstract
Efficient and safe railway signalling systems, together with energy-saving infrastructures, are among the main pillars to guarantee sustainable transportation. ERTMS L3 moving block is one of the next generation railway signalling systems currently under trial deployment, with the promise of increased capacity on railway tracks, reduced costs and improved reliability. We report an experience in modelling a satellite-based ERTMS L3 moving block signalling system from the railway industry with Simulink and Uppaal and analysing the Uppaal model with Uppaal SMC. The lessons learned range from demonstrating the feasibility of applying Uppaal SMC in a moving block railway context, to the offered possibility of fine tuning communication parameters in satellite-based ERTMS L3 moving block railway signalling system models that are fundamental for the reliability of their operational behaviour.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
The full model includes the train’s dynamics, not reported here to ease visualisation.
- 6.
- 7.
References
Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model. Comput. Simul. 28(1), 6:1–6:39 (2018)
Arcaini, P., Ježek, P., Kofroň, J.: Modelling the hybrid ERTMS/ETCS level 3 case study in spin. In: Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 277–291. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4_19
Arnold, A., et al.: An application of SMC to continuous validation of heterogeneous systems. EAI Endorsed Trans. Ind. Netw. Intell. Syst. 4(10), 1–19 (2017). https://doi.org/10.4108/eai.1-2-2017.152154
Bartholomeus, M., Luttik, B., Willemse, T.: Modelling and analysing ERTMS hybrid level 3 with the mCRL2 toolset. In: Howar, F., Barnat, J. (eds.) FMICS 2018. LNCS, vol. 11119, pp. 98–114. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00244-2_7
Basile, D., ter Beek, M.H., Ciancia, V.: Statistical model checking of a moving block railway signalling scenario with Uppaal SMC. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11245, pp. 372–391. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03421-4_24
Basile, D., Di Giandomenico, F., Gnesi, S.: Statistical model checking of an energy-saving cyber-physical system in the railway domain. In: SAC, pp. 1356–1363. ACM (2017)
Basile, D., et al.: On the industrial uptake of formal methods in the railway domain. In: Furia, C.A., Winter, K. (eds.) IFM 2018. LNCS, vol. 11023, pp. 20–29. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98938-9_2
ter Beek, M.H., Fantechi, A., Ferrari, A., Gnesi, S., Scopigno, R.: Formal methods for the railway sector. ERCIM News 112, 44–45 (2018)
ter Beek, M.H., Gnesi, S., Knapp, A.: Formal methods for transport systems. Int. J. Softw. Tools Technol. Transf. 20(3), 355–358 (2018)
ter Beek, M.H., Legay, A., Lluch Lafuente, A., Vandin, A.: Statistical model checking for product lines. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 114–133. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47166-2_8
Behrmann, G., et al.: UPPAAL 4.0. In: QEST, pp. 125–126. IEEE (2006)
Beugin, J., Marais, J.: Simulation-based evaluation of dependability and safety properties of satellite technologies for railway localization. Transp. Res. C-Emer. 22, 42–57 (2012)
Boulanger, J.L. (ed.): Formal Methods Applied to Industrial Complex Systems - Implementation of the B Method. Wiley, Hoboken (2014)
Cappart, Q., et al.: Verification of interlocking systems using statistical model checking. In: HASE, pp. 61–68. IEEE (2017)
Cunha, A., Macedo, N.: Validating the hybrid ERTMS/ETCS level 3 concept with electrum. In: Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 307–321. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4_21
David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: Uppaal SMC tutorial. Int. J. Softw. Tools Technol. Transf. 17(4), 397–415 (2015)
David, A., et al.: On time with minimal expected cost!. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 129–145. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6_10
Douglass, B.P.: Real-time UML. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 53–70. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45739-9_4
EEIG ERTMS Users Group: ERTMS/ETCS RAMS Requirements Specification – Chapter 2 - RAM, 30 September 1998
EEIG ERTMS Users Group: System Requirements Specification v3.6.0 - SUBSET-026, 15 June 2016
EEIG ERTMS Users Group: Hybrid ERTMS/ETCS Level 3: Principles, 14 July 2017
European Committee for Electrotechnical Standardization: CENELEC EN 50128 – Railway applications - Communication, signalling and processing systems - Software for railway control and protection systems, 01 June 2011
Fantechi, A.: Twenty-five years of formal methods and railways: what next? In: Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 167–183. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05032-4_13
Fantechi, A., Ferrari, A., Gnesi, S.: Formal methods and safety certification: challenges in the railways domain. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 261–265. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47169-3_18
Fantechi, A., Fokkink, W., Morzenti, A.: Some trends in formal methods applications to railway signaling. In: Formal Methods for Industrial Critical Systems: A Survey of Applications, pp. 61–84. Wiley (2013). (chap. 4)
Ferrari, A., Fantechi, A., Gnesi, S., Magnani, G.: Model-based development and formal methods in the railway industry. IEEE Softw. 30(3), 28–34 (2013)
Ferrari, A., Fantechi, A., Magnani, G., Grasso, D., Tempestini, M.: The Metrô Rio case study. Sci. Comput. Program. 78(7), 828–842 (2013)
Ferrari, A., et al.: Survey on formal methods and tools in railways: the ASTRail approach. In: Collart-Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2019. LNCS, vol. 11495, pp. 226–241. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18744-6_15
Filipovikj, P., Mahmud, N., Marinescu, R., Seceleanu, C., Ljungkrantz, O., Lönn, H.: Simulink to UPPAAL statistical model checker: analyzing automotive industrial systems. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 748–756. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48989-6_46
Flammini, F. (ed.): Railway Safety, Reliability, and Security: Technologies and Systems Engineering. IGI Global, Hershey (2012)
Fränzle, M., Hahn, E., Hermanns, H., Wolovick, N., Zhang, L.: Measurability and safety verification for stochastic hybrid systems. In: HSCC, pp. 43–52. ACM (2011)
Furness, N., van Houten, H., Arenas, L., Bartholomeus, M.: ERTMS level 3: the game-changer. IRSE News 232, 2–9 (2017)
Gadyatskaya, O., Hansen, R.R., Larsen, K.G., Legay, A., Olesen, M.C., Poulsen, D.B.: Modelling attack-defense trees using timed automata. In: Fränzle, M., Markey, N. (eds.) FORMATS 2016. LNCS, vol. 9884, pp. 35–50. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44878-7_3
Ghazel, M.: Formalizing a subset of ERTMS/ETCS specifications for verification purposes. Transp. Res. C-Emer. 42, 60–75 (2014)
Ghazel, M.: A control scheme for automatic level crossings under the ERTMS/ ETCS level 2/3 operation. IEEE Trans. Intell. Transp. Syst. 18, 2667–2680 (2017)
Gilmore, S., Tribastone, M., Vandin, A.: An analysis pathway for the quantitative evaluation of public transport systems. In: Albert, E., Sekerinski, E. (eds.) IFM 2014. LNCS, vol. 8739, pp. 71–86. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10181-1_5
Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Program. 8(3), 231–274 (1987)
Herde, C., Eggers, A., Fränzle, M., Teige, T.: Analysis of hybrid systems using HySAT. In: ICONS, pp. 196–201. IEEE (2008)
Larsen, K.G., Legay, A.: Statistical model checking – past, present, and future. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8803, pp. 135–142. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45231-8_10
Littlewood, B., Popov, P., Strigini, L.: Modeling software design diversity: a review. ACM Comput. Surv. 33(2), 177–208 (2001)
Mammar, A., Frappier, M., Tueno Fotso, S.J., Laleau, R.: An Event-B model of the hybrid ERTMS/ETCS level 3 standard. In: Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 353–366. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4_24
Mazzanti, F., Ferrari, A.: Ten diverse formal models for a CBTC automatic train supervision system. In: MARS. EPTCS, vol. 268, pp. 104–149 (2018)
Mazzanti, F., Ferrari, A., Spagnolo, G.O.: Towards formal methods diversity in railways: an experience report with seven frameworks. Int. J. Softw. Tools Technol. Transf. 20(3), 263–288 (2018)
Nardone, R., et al.: Modeling railway control systems in Promela. In: Artho, C., Ölveczky, P.C. (eds.) FTSCS 2015. CCIS, vol. 596, pp. 121–136. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29510-7_7
Puch, S., Fränzle, M., Gerwinn, S.: Quantitative risk assessment of safety-critical systems via guided simulation for rare events. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11245, pp. 305–321. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03421-4_20
Rispoli, F., et al.: Recent progress in application of GNSS and advanced communications for railway signaling. In: RADIOELEKTRONIKA, pp. 13–22. IEEE (2013)
Selic, B.: The real-time UML standard: definition and application. In: DATE, pp. 770–772 (2002)
UNISIG: FIS for the RBC/RBC handover, version 3.1.0, 15 June 2016
Acknowledgments
This work was partially funded by the Tuscany Region project SISTER (SIgnalling & Sensing TEchnologies in Railway application) and by the EU project ASTRail (SAtellite-based Signalling and Automation SysTems on Railways along with Formal Method and Moving Block validation), which received funding from the Shift2Rail Joint Undertaking under the EU’s H2020 Research and Innovation programme under Grant Agreement No. 777561. The content of this paper reflects only the authors’ view, and the Shift2Rail JU is not responsible for any use that may be made of the included information.
We thank our colleagues in the Formal Methods and Tools lab at ISTI-CNR and our project partners for discussions on the models analysed in the paper. We thank the four anonymous reviewers for their suggestions to improve the paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Basile, D., ter Beek, M.H., Ferrari, A., Legay, A. (2019). Modelling and Analysing ERTMS L3 Moving Block Railway Signalling with Simulink and Uppaal SMC. In: Larsen, K., Willemse, T. (eds) Formal Methods for Industrial Critical Systems. FMICS 2019. Lecture Notes in Computer Science(), vol 11687. Springer, Cham. https://doi.org/10.1007/978-3-030-27008-7_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-27008-7_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-27007-0
Online ISBN: 978-3-030-27008-7
eBook Packages: Computer ScienceComputer Science (R0)