Modelling and Analysing ERTMS L3 Moving Block Railway Signalling with Simulink and Uppaal SMC | SpringerLink
Skip to main content

Modelling and Analysing ERTMS L3 Moving Block Railway Signalling with Simulink and Uppaal SMC

  • Conference paper
  • First Online:
Formal Methods for Industrial Critical Systems (FMICS 2019)

Abstract

Efficient and safe railway signalling systems, together with energy-saving infrastructures, are among the main pillars to guarantee sustainable transportation. ERTMS L3 moving block is one of the next generation railway signalling systems currently under trial deployment, with the promise of increased capacity on railway tracks, reduced costs and improved reliability. We report an experience in modelling a satellite-based ERTMS L3 moving block signalling system from the railway industry with Simulink and Uppaal and analysing the Uppaal model with Uppaal SMC. The lessons learned range from demonstrating the feasibility of applying Uppaal SMC in a moving block railway context, to the offered possibility of fine tuning communication parameters in satellite-based ERTMS L3 moving block railway signalling system models that are fundamental for the reliability of their operational behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.astrail.eu.

  2. 2.

    http://www.shift2rail.org.

  3. 3.

    http://www.mathworks.com/products/simulink.html.

  4. 4.

    https://github.com/alessioferrari/ASTRail-simulink-models.

  5. 5.

    The full model includes the train’s dynamics, not reported here to ease visualisation.

  6. 6.

    http://people.cs.aau.dk/~adavid/smc.

  7. 7.

    https://github.com/davidebasile/ASTRail.

References

  1. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model. Comput. Simul. 28(1), 6:1–6:39 (2018)

    Article  MathSciNet  Google Scholar 

  2. Arcaini, P., Ježek, P., Kofroň, J.: Modelling the hybrid ERTMS/ETCS level 3 case study in spin. In: Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 277–291. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4_19

    Chapter  Google Scholar 

  3. Arnold, A., et al.: An application of SMC to continuous validation of heterogeneous systems. EAI Endorsed Trans. Ind. Netw. Intell. Syst. 4(10), 1–19 (2017). https://doi.org/10.4108/eai.1-2-2017.152154

    Article  Google Scholar 

  4. Bartholomeus, M., Luttik, B., Willemse, T.: Modelling and analysing ERTMS hybrid level 3 with the mCRL2 toolset. In: Howar, F., Barnat, J. (eds.) FMICS 2018. LNCS, vol. 11119, pp. 98–114. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00244-2_7

    Chapter  Google Scholar 

  5. Basile, D., ter Beek, M.H., Ciancia, V.: Statistical model checking of a moving block railway signalling scenario with Uppaal SMC. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11245, pp. 372–391. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03421-4_24

    Chapter  Google Scholar 

  6. Basile, D., Di Giandomenico, F., Gnesi, S.: Statistical model checking of an energy-saving cyber-physical system in the railway domain. In: SAC, pp. 1356–1363. ACM (2017)

    Google Scholar 

  7. Basile, D., et al.: On the industrial uptake of formal methods in the railway domain. In: Furia, C.A., Winter, K. (eds.) IFM 2018. LNCS, vol. 11023, pp. 20–29. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98938-9_2

    Chapter  Google Scholar 

  8. ter Beek, M.H., Fantechi, A., Ferrari, A., Gnesi, S., Scopigno, R.: Formal methods for the railway sector. ERCIM News 112, 44–45 (2018)

    Google Scholar 

  9. ter Beek, M.H., Gnesi, S., Knapp, A.: Formal methods for transport systems. Int. J. Softw. Tools Technol. Transf. 20(3), 355–358 (2018)

    Article  Google Scholar 

  10. ter Beek, M.H., Legay, A., Lluch Lafuente, A., Vandin, A.: Statistical model checking for product lines. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 114–133. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47166-2_8

    Chapter  Google Scholar 

  11. Behrmann, G., et al.: UPPAAL 4.0. In: QEST, pp. 125–126. IEEE (2006)

    Google Scholar 

  12. Beugin, J., Marais, J.: Simulation-based evaluation of dependability and safety properties of satellite technologies for railway localization. Transp. Res. C-Emer. 22, 42–57 (2012)

    Article  Google Scholar 

  13. Boulanger, J.L. (ed.): Formal Methods Applied to Industrial Complex Systems - Implementation of the B Method. Wiley, Hoboken (2014)

    Google Scholar 

  14. Cappart, Q., et al.: Verification of interlocking systems using statistical model checking. In: HASE, pp. 61–68. IEEE (2017)

    Google Scholar 

  15. Cunha, A., Macedo, N.: Validating the hybrid ERTMS/ETCS level 3 concept with electrum. In: Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 307–321. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4_21

    Chapter  Google Scholar 

  16. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: Uppaal SMC tutorial. Int. J. Softw. Tools Technol. Transf. 17(4), 397–415 (2015)

    Article  Google Scholar 

  17. David, A., et al.: On time with minimal expected cost!. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 129–145. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6_10

    Chapter  Google Scholar 

  18. Douglass, B.P.: Real-time UML. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 53–70. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45739-9_4

    Chapter  Google Scholar 

  19. EEIG ERTMS Users Group: ERTMS/ETCS RAMS Requirements Specification – Chapter 2 - RAM, 30 September 1998

    Google Scholar 

  20. EEIG ERTMS Users Group: System Requirements Specification v3.6.0 - SUBSET-026, 15 June 2016

    Google Scholar 

  21. EEIG ERTMS Users Group: Hybrid ERTMS/ETCS Level 3: Principles, 14 July 2017

    Google Scholar 

  22. European Committee for Electrotechnical Standardization: CENELEC EN 50128 – Railway applications - Communication, signalling and processing systems - Software for railway control and protection systems, 01 June 2011

    Google Scholar 

  23. Fantechi, A.: Twenty-five years of formal methods and railways: what next? In: Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 167–183. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05032-4_13

    Chapter  Google Scholar 

  24. Fantechi, A., Ferrari, A., Gnesi, S.: Formal methods and safety certification: challenges in the railways domain. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 261–265. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47169-3_18

    Chapter  Google Scholar 

  25. Fantechi, A., Fokkink, W., Morzenti, A.: Some trends in formal methods applications to railway signaling. In: Formal Methods for Industrial Critical Systems: A Survey of Applications, pp. 61–84. Wiley (2013). (chap. 4)

    Google Scholar 

  26. Ferrari, A., Fantechi, A., Gnesi, S., Magnani, G.: Model-based development and formal methods in the railway industry. IEEE Softw. 30(3), 28–34 (2013)

    Article  Google Scholar 

  27. Ferrari, A., Fantechi, A., Magnani, G., Grasso, D., Tempestini, M.: The Metrô Rio case study. Sci. Comput. Program. 78(7), 828–842 (2013)

    Article  Google Scholar 

  28. Ferrari, A., et al.: Survey on formal methods and tools in railways: the ASTRail approach. In: Collart-Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2019. LNCS, vol. 11495, pp. 226–241. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18744-6_15

    Chapter  Google Scholar 

  29. Filipovikj, P., Mahmud, N., Marinescu, R., Seceleanu, C., Ljungkrantz, O., Lönn, H.: Simulink to UPPAAL statistical model checker: analyzing automotive industrial systems. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 748–756. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48989-6_46

    Chapter  Google Scholar 

  30. Flammini, F. (ed.): Railway Safety, Reliability, and Security: Technologies and Systems Engineering. IGI Global, Hershey (2012)

    Google Scholar 

  31. Fränzle, M., Hahn, E., Hermanns, H., Wolovick, N., Zhang, L.: Measurability and safety verification for stochastic hybrid systems. In: HSCC, pp. 43–52. ACM (2011)

    Google Scholar 

  32. Furness, N., van Houten, H., Arenas, L., Bartholomeus, M.: ERTMS level 3: the game-changer. IRSE News 232, 2–9 (2017)

    Google Scholar 

  33. Gadyatskaya, O., Hansen, R.R., Larsen, K.G., Legay, A., Olesen, M.C., Poulsen, D.B.: Modelling attack-defense trees using timed automata. In: Fränzle, M., Markey, N. (eds.) FORMATS 2016. LNCS, vol. 9884, pp. 35–50. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44878-7_3

    Chapter  MATH  Google Scholar 

  34. Ghazel, M.: Formalizing a subset of ERTMS/ETCS specifications for verification purposes. Transp. Res. C-Emer. 42, 60–75 (2014)

    Article  Google Scholar 

  35. Ghazel, M.: A control scheme for automatic level crossings under the ERTMS/ ETCS level 2/3 operation. IEEE Trans. Intell. Transp. Syst. 18, 2667–2680 (2017)

    Article  Google Scholar 

  36. Gilmore, S., Tribastone, M., Vandin, A.: An analysis pathway for the quantitative evaluation of public transport systems. In: Albert, E., Sekerinski, E. (eds.) IFM 2014. LNCS, vol. 8739, pp. 71–86. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10181-1_5

    Chapter  Google Scholar 

  37. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Program. 8(3), 231–274 (1987)

    Article  MathSciNet  Google Scholar 

  38. Herde, C., Eggers, A., Fränzle, M., Teige, T.: Analysis of hybrid systems using HySAT. In: ICONS, pp. 196–201. IEEE (2008)

    Google Scholar 

  39. Larsen, K.G., Legay, A.: Statistical model checking – past, present, and future. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8803, pp. 135–142. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45231-8_10

    Chapter  Google Scholar 

  40. Littlewood, B., Popov, P., Strigini, L.: Modeling software design diversity: a review. ACM Comput. Surv. 33(2), 177–208 (2001)

    Article  Google Scholar 

  41. Mammar, A., Frappier, M., Tueno Fotso, S.J., Laleau, R.: An Event-B model of the hybrid ERTMS/ETCS level 3 standard. In: Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 353–366. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4_24

    Chapter  Google Scholar 

  42. Mazzanti, F., Ferrari, A.: Ten diverse formal models for a CBTC automatic train supervision system. In: MARS. EPTCS, vol. 268, pp. 104–149 (2018)

    Article  Google Scholar 

  43. Mazzanti, F., Ferrari, A., Spagnolo, G.O.: Towards formal methods diversity in railways: an experience report with seven frameworks. Int. J. Softw. Tools Technol. Transf. 20(3), 263–288 (2018)

    Article  Google Scholar 

  44. Nardone, R., et al.: Modeling railway control systems in Promela. In: Artho, C., Ölveczky, P.C. (eds.) FTSCS 2015. CCIS, vol. 596, pp. 121–136. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29510-7_7

    Chapter  Google Scholar 

  45. Puch, S., Fränzle, M., Gerwinn, S.: Quantitative risk assessment of safety-critical systems via guided simulation for rare events. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11245, pp. 305–321. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03421-4_20

    Chapter  Google Scholar 

  46. Rispoli, F., et al.: Recent progress in application of GNSS and advanced communications for railway signaling. In: RADIOELEKTRONIKA, pp. 13–22. IEEE (2013)

    Google Scholar 

  47. Selic, B.: The real-time UML standard: definition and application. In: DATE, pp. 770–772 (2002)

    Google Scholar 

  48. UNISIG: FIS for the RBC/RBC handover, version 3.1.0, 15 June 2016

    Google Scholar 

Download references

Acknowledgments

This work was partially funded by the Tuscany Region project SISTER (SIgnalling & Sensing TEchnologies in Railway application) and by the EU project ASTRail (SAtellite-based Signalling and Automation SysTems on Railways along with Formal Method and Moving Block validation), which received funding from the Shift2Rail Joint Undertaking under the EU’s H2020 Research and Innovation programme under Grant Agreement No. 777561. The content of this paper reflects only the authors’ view, and the Shift2Rail JU is not responsible for any use that may be made of the included information.

We thank our colleagues in the Formal Methods and Tools lab at ISTI-CNR and our project partners for discussions on the models analysed in the paper. We thank the four anonymous reviewers for their suggestions to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurice H. ter Beek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Basile, D., ter Beek, M.H., Ferrari, A., Legay, A. (2019). Modelling and Analysing ERTMS L3 Moving Block Railway Signalling with Simulink and Uppaal SMC. In: Larsen, K., Willemse, T. (eds) Formal Methods for Industrial Critical Systems. FMICS 2019. Lecture Notes in Computer Science(), vol 11687. Springer, Cham. https://doi.org/10.1007/978-3-030-27008-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27008-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27007-0

  • Online ISBN: 978-3-030-27008-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics