Continuous Space-Bounded Non-malleable Codes from Stronger Proofs-of-Space | SpringerLink
Skip to main content

Continuous Space-Bounded Non-malleable Codes from Stronger Proofs-of-Space

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2019 (CRYPTO 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11692))

Included in the following conference series:

Abstract

Non-malleable codes are encoding schemes that provide protections against various classes of tampering attacks. Recently Faust et al. (CRYPTO 2017) initiated the study of space-bounded non-malleable codes that provide such protections against tampering within small-space devices. They put forward a construction based on any non-interactive proof-of-space (NIPoS). However, the scheme only protects against an a priori bounded number of tampering attacks.

We construct non-malleable codes that are resilient to an unbounded polynomial number of space-bounded tamperings. Towards that we introduce a stronger variant of \(\text {NIPoS}\) called proof-extractable \(\text {NIPoS}\) (\(\text {PExt-NIPoS}\)), and propose two approaches of constructing such a primitive. Using a new proof strategy we show that the generic encoding scheme of Faust et al. achieves unbounded tamper-resilience when instantiated with a \(\text {PExt-NIPoS}\). We show two methods to construct \(\text {PExt-NIPoS}\):

  1. 1.

    The first method uses a special family of “memory-hard” graphs, called challenge-hard graphs (CHG), a notion we introduce here. We instantiate such family of graphs based on an extension of stack of localized expanders (first used by Ren and Devadas in the context of proof-of-space). In addition, we show that the graph construction used as a building block for the proof-of-space by Dziembowski et al. (CRYPTO 2015) satisfies challenge-hardness as well. These two CHG-instantiations lead to continuous space-bounded NMC with different features in the random oracle model.

  2. 2.

    Our second instantiation relies on a new measurable property, called uniqueness of \(\text {NIPoS}\). We show that standard extractability can be upgraded to proof-extractability if the \(\text {NIPoS}\) also has uniqueness. We propose a simple heuristic construction of \(\text {NIPoS}\), that achieves (partial) uniqueness, based on a candidate memory-hard function in the standard model and a publicly verifiable computation with small-space verification. Instantiating the encoding scheme of Faust et al. with this \(\text {NIPoS}\), we obtain a continuous space-bounded NMC that supports the “most practical” parameters, complementing the provably secure but “relatively impractical” CHG-based constructions. Additionally, we revisit the construction of Faust et al. and observe that due to the lack of uniqueness of their \(\text {NIPoS}\), the resulting encoding schemes yield “highly impractical” parameters in the continuous setting.

We conclude the paper with a comparative study of all our non-malleable code constructions with an estimation of concrete parameters.

Work done at VISA Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 18589
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In the rest of the paper whenever we say that an encoding scheme satisfies continuous space-bounded non-malleability or is a \(\text {CSNMC}\), we mean that the encoding scheme is a leaky NMC for space-bounded tampering with \(\ell \propto \log (\theta )\).

  2. 2.

    Note that we made some syntactical change to \(\text {FHMV}\)’s definition of extractability by introducing an explicit hint-producing function. We introduce the length of the hint as a new extractability parameter which must be small for making the definition meaningful. For example, if the leakage function leaks the entire pair \(( id ',\pi _ id ')\), then the definition would be trivially satisfied. Looking ahead, in the proof of \(\text {CSNMC}\) this hint will be used by the NMC simulator as a leakage to simulate the tampering experiment. For more details we refer to Sect. 5.

  3. 3.

    This is without loss of generality, as in the tampering setting \(\mathsf {A}\) is chosen by PPT distinguisher \(\mathsf {D}\) (“big adversary” in our case) who can just hardwires its truly random coin to \(\mathsf {A}\).

  4. 4.

    Note that the terminology “space-bounded” is slightly overloaded as we use it both for an encoding scheme as well as for an algorithm (cf. Definition 1).

  5. 5.

    Recall that for any non-trivial leakage we must have \(\ell \le k - \omega (\log k)\) as otherwise the tampering adversary learns (almost) all information about the input rendering the notion useless.

  6. 6.

    Note that \(\mathsf {B}\) does not make RO queries after outputting the small adversary \(\mathsf {A}\).

  7. 7.

    We require the in-degree of the graph to be a constant, because for graph-labeling in the ROM this captures the essence of the standard model. To see this assume that \(\mathcal {H}\) is implemented by an iteration-based scheme (e.g., Merkle-Damgård extension), and thereby to compute the hash output, it is sufficient to store only a few labels at each iteration step. However, while in the ROM computing a label \(\mathsf {label}(v) :=\mathcal {H}(v, \mathsf {label}(\mathsf {pred}(v)))\) is only possible if the entire labeling \(\mathsf {label}(\mathsf {pred}(v))\) is stored. If the in-degree is high (e.g. super-constant) this distinction would affect the parameters. We refer to Appendix B.3 in [11] for more discussions.

  8. 8.

    For ease of explanation, we assume that |V| and \(|V_{c}|\) are powers of 2.

  9. 9.

    The polynomial factor in \(\varepsilon _\mathsf{p\text {-}ext}\) depends on the number of RO queries made by the adversary. We refer to full version [14] for the exact probability upper bound.

  10. 10.

    Since popular memory-hard functions like SCrypt [39] are not conjectured to provide exponential space-time trade-off, we are unable to use them here.

  11. 11.

    We remark that this corollary is very similar to Corollary 1 of [23] as one may expect. However the parameters here are much better in terms of efficiency.

  12. 12.

    To achieve 128-bits of security, as suggested by [8], we will set \(\lceil \log (p) \rceil \approx 1536\).

  13. 13.

    We stress that this value can be set much higher without affecting the main parameters significantly.

References

  1. Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Optimal computational split-state non-malleable codes. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part II. LNCS, vol. 9563, pp. 393–417. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-0_15

    Chapter  Google Scholar 

  2. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combinatorics. In: Shmoys, D.B. (ed.) 46th Annual ACM Symposium on Theory of Computing, pp. 774–783, 31 May–3 June 2014. ACM Press, New York (2014)

    Google Scholar 

  3. Aggarwal, D., Dottling, N., Nielsen, J.B., Obremski, M., Purwanto, E.: Continuous non-malleable codes in the 8-split-state model. Cryptology ePrint Archive, Report 2017/357 (2017). https://eprint.iacr.org/2017/357

  4. Aggarwal, D., Kazana, T., Obremski, M.: Inception makes non-malleable codes stronger. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS, vol. 10678, pp. 319–343. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_10

    Chapter  Google Scholar 

  5. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Explicit non-malleable codes against bit-wise tampering and permutations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 538–557. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_26

    Chapter  Google Scholar 

  6. Alwen, J., Chen, B., Pietrzak, K., Reyzin, L., Tessaro, S.: Scrypt is maximally memory-hard. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part III. LNCS, vol. 10212, pp. 33–62. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7_2

    Chapter  Google Scholar 

  7. Ateniese, G., Bonacina, I., Faonio, A., Galesi, N.: Proofs of space: when space is of the essence. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 538–557. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7_31

    Chapter  Google Scholar 

  8. Guillevic, A., Morain, F.: Discrete logarithms. Book Chapter 9. https://hal.inria.fr/hal-01420485v1/document

  9. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes for bounded depth, bounded fan-in circuits. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 881–908. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_31

    Chapter  MATH  Google Scholar 

  10. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes from average-case hardness: \({\sf A\sf {\sf C}}^0\), decision trees, and streaming space-bounded tampering. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 618–650. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_20

    Chapter  Google Scholar 

  11. Boneh, D., Corrigan-Gibbs, H., Schechter, S.: Balloon hashing: a memory-hard function providing provable protection against sequential attacks. Cryptology ePrint Archive, Report 2016/027 (2016). http://eprint.iacr.org/2016/027

  12. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of eliminating errors in cryptographic computations. J. Cryptology 14(2), 101–119 (2001)

    Article  MathSciNet  Google Scholar 

  13. Chandran, N., Goyal, V., Mukherjee, P., Pandey, O., Upadhyay, J.: Block-wise non-malleable codes. In: Chatzigiannakis, I., Mitzenmacher, M., Rabani, Y., Sangiorgi, D. (eds.) ICALP 2016. 43rd International Colloquium on Automata, Languages and Programming, LIPIcs, Rome, Italy, 11–15 July 2016, vol. 55, pp. 31:1–31:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

    Google Scholar 

  14. Chen, B., Chen, Y., Hostáková, K., Mukherjee, P.: Continuous space-bounded non-malleable codes from stronger proofs-of-space. Cryptology ePrint Archive, Report 2019/552 (2019). https://eprint.iacr.org/2019/552

  15. Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-state tampering. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 440–464. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_19

    Chapter  MATH  Google Scholar 

  16. Dachman-Soled, D., Liu, F.-H., Shi, E., Zhou, H.-S.: Locally decodable and updatable non-malleable codes and their applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014, pp. 427–450. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6_18

    Chapter  Google Scholar 

  17. Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K.: Proofs of space. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 585–605. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_29

    Chapter  Google Scholar 

  18. Dziembowski, S., Kazana, T., Wichs, D.: Key-evolution schemes resilient to space-bounded leakage. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 335–353. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_19

    Chapter  Google Scholar 

  19. Dziembowski, S., Kazana, T., Wichs, D.: One-time computable self-erasing functions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 125–143. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_9

    Chapter  Google Scholar 

  20. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Yao, A.C.-C. (ed.) ICS 2010: 1st Innovations in Computer Science, pp. 434–452. Tsinghua University, Beijing, China, 5–7 January 2010. Tsinghua University Press (2010)

    Google Scholar 

  21. Faonio, A., Nielsen, J.B., Simkin, M., Venturi, D.: Continuously non-malleable codes with split-state refresh. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 121–139. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93387-0_7

    Chapter  Google Scholar 

  22. Faust, S., Hostáková, K., Mukherjee, P., Venturi, D.: Non-malleable codes for space-bounded tampering. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 95–126. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_4

    Chapter  Google Scholar 

  23. Faust, S., Hostakova, K., Mukherjee, P., Venturi, D.: Non-malleable codes for space-bounded tampering. Cryptology ePrint Archive, Report 2017/530 (2017). http://eprint.iacr.org/2017/530

  24. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_20

    Chapter  Google Scholar 

  25. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: A tamper and leakage resilient von Neumann architecture. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 579–603. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_26

    Chapter  Google Scholar 

  26. Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable codes and key-derivation for poly-size tampering circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 111–128. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_7

    Chapter  Google Scholar 

  27. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    Chapter  Google Scholar 

  28. Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In: Wichs, D., Mansour, Y. (eds.) 48th Annual ACM Symposium on Theory of Computing, Cambridge, MA, USA, 18–21 June 2016, pp. 1128–1141. ACM Press (2016)

    Google Scholar 

  29. Jafargholi, Z., Wichs, D.: Tamper detection and continuous non-malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014, pp. 451–480. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6_19

    Chapter  Google Scholar 

  30. Kanukurthi, B., Obbattu, S.L.B., Sekar, S.: Four-state non-malleable codes with explicit constant rate. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS, vol. 10678, pp. 344–375. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_11

    Chapter  Google Scholar 

  31. Kanukurthi, B., Obbattu, S.L.B., Sekar, S.: Non-malleable Randomness encoders and their applications. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 589–617. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_19

    Chapter  Google Scholar 

  32. Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–532. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_30

    Chapter  Google Scholar 

  33. Mahmoody, M., Moran, T., Vadhan, S.P.: Publicly verifiable proofs of sequential work. In: Kleinberg, R.D. (ed.) ITCS 2013: 4th Innovations in Theoretical Computer Science, Berkeley, CA, USA, 9–12 January 2013, pp. 373–388. Association for Computing Machinery (2013)

    Google Scholar 

  34. Mukherjee, P.: Protecting cryptographic memory against tampering attack. Ph.D thesis (2015)

    Google Scholar 

  35. Ostrovsky, R., Persiano, G., Venturi, D., Visconti, I.: Continuously non-malleable codes in the split-state model from minimal assumptions. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 608–639. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_21

    Chapter  Google Scholar 

  36. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. In: 2013 IEEE Symposium on Security and Privacy, Berkeley, CA, USA, 19–22 May 2013, pp. 238–252. IEEE Computer Society Press (2013)

    Google Scholar 

  37. Paul, W.J., Tarjan, R.E., Celoni, J.R.: Space bounds for a game on graphs. Math. Syst. Theory 10(1), 239–251 (1976)

    Article  MathSciNet  Google Scholar 

  38. Ren, L., Devadas, S.: Proof of space from stacked expanders. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part I. LNCS, vol. 9985, pp. 262–285. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4_11

    Chapter  MATH  Google Scholar 

  39. Tarsnap. The scrypt key derivation function. https://eprint.iacr.org/2017/1125

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Binyi Chen or Yilei Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, B., Chen, Y., Hostáková, K., Mukherjee, P. (2019). Continuous Space-Bounded Non-malleable Codes from Stronger Proofs-of-Space. In: Boldyreva, A., Micciancio, D. (eds) Advances in Cryptology – CRYPTO 2019. CRYPTO 2019. Lecture Notes in Computer Science(), vol 11692. Springer, Cham. https://doi.org/10.1007/978-3-030-26948-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26948-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26947-0

  • Online ISBN: 978-3-030-26948-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics