Abstract
In this paper we first recall some rigorously proved results related to the Heilbronn numbers and the corresponding optimal configurations of \(n=5,6,7\) points in squares, disks, and general convex bodies K in the plane, \(n=5,6\) points in triangles and a bundle of approximate results obtained by numeric computation in the Introduction section. And then in the second section we will present a proof to a conjecture on the Heilbronn number for seven points in the triangle through solving a group of non-linear optimization problems via symbolic computation. In the third section we list three unsolved well-formed such non-linear programming problems corresponding to Heilbronn configurations for \(n=8,9\) points in squares and 8 points in triangle, we expect they can be solved by similar method we used in the Section two. In the final section we mention two generalizations of the classic Heilbronn triangle problem. The paper aims to provide a concise guide to further studies on Heilbronn-type problems for small number of points in specific convex bodies.
Supported by the grant from the National Natural Science Foundation of China (No. 11471209).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barequet, G.: A lower bound for for Heilbronn’s triangle problem in \(d\) dimensions. SIAM J. Discrete Math. 14(2), 230–236 (2001)
Barequet, G., Shaikhet, A.: The on-line Heilbronn’s triangle problem in \(d\) dimensions. Discrete Comput. Geom. 38(1), 51–60 (2007)
Brass, P.: An upper bound for the \(d\)-dimensional analogue of Heilbronn’s triangle problem. SIAM J. Discrete Math. 19(1), 192–195 (2006)
Cantrell, D.: The Heilbronn problem for triangles. http://www2.stetson.edu/efriedma/heiltri/. Accessed 5 Apr 2019
Chen, L., Zeng, Z., Zhou, W.: An upper bound of Heilbronn number for eight points in triangles. J. Comb. Optim. 28(4), 854–874 (2014)
Chen, L., Xu, Y., Zeng, Z.: Searching approximate global optimal Heilbronn configurations of nine points in the unit square via GPGPU computing. J. Global Optim. 68(1), 147–167 (2017)
Comellas, F., Yebra, J.L.A.: New lower bounds for Heilbronn numbers. Elec. J. Comb. 9, 10 (2002). http://www.combinatorics.org/Volume_9/PDF/v9i1r6.pdf. Accessed 5 Apr 2019
De Comité, F., Delahaye, J.-P.: Automated proofs in geometry : computing upper bounds for the Heilbronn problem for triangles. https://arxiv.org/pdf/0911.4375.pdf. Accessed 5 Apr 2019
Dress, A., Yang, L., Zeng, Z.: Heilbronn problem for six points in a planar convex body. Combinatorics and Graph Theory 1995. vol. 1 (Hefei), pp. 97–118, World Sci. Publishing, River Edge (1995)
Dress, A., Yang, L., Zeng, Z.: Heilbronn problem for six points in a planar convex body. In: Du, D.Z., Pardalos, P.M. (eds.) Minimax and Applications. Nonconvex Optimization and Its Applications, vol. 4, pp. 173–190. Springer, Boston (1995)
Friedman, E.: The Heilbronn problem for squares. https://www2.stetson.edu/friedma/heilbronn/. Accessed 5 Apr 2019
Friedman, E.: The Heilbronn problem for triangles. https://www2.stetson.edu/efriedma/heiltri/. Accessed 5 Apr 2019
Gavin, H., Scruggs, J.: Constrained optimization using Lagrange multipliers. http://people.duke.edu/hpgavin/cee201/LagrangeMultipliers.pdf
Goldberg, M.: Maximizing the smallest triangle made by points in a square. Math. Mag. 45, 135–144 (1972)
Kahle, M.: Points in a triangle forcing small triangles. Geombinatorics XVIII, 114–128 (2008). arxiv.org/abs/0811.2449v1
Karpov, P.: Notable results. https://inversed.ru/Ascension.htm#results. Accessed 5 Apr 2019
Kómlos, J., Pintz, J., Szemerédi, E.: On Heilbronn’s triangle problem. J. London Math. Soc. 24, 385–396 (1981)
Kómlos, J., Pintz, J., Szemerédi, E.: A lower bound for Heilbronn’s triangle problem. J. London Math. Soc. 25, 13–24 (1982)
Pegg Jr., E.: Heilbronn triangles in the unit square. Wolfram Demonstrations Project. http://demonstrations.wolfram.com/HeilbronnTrianglesintheunitSquare/. Accessed 6 Apr 2019
Roth, K.F.: On a problem of Heilbronn. J. London Math. Soc. 26, 198–204 (1951)
Roth, K.F.: On a problem of Heilbronn II. Proc. London Math Soc. 3(25), 193–212 (1972)
Roth, K.F.: On a problem of Heilbronn III. Proc. London Math Soc. 3(25), 543–549 (1972)
Roth, K.F.: Estimation of the area of the smallest triangle obtained by selecting three out of \(n\) points in a disc of unit area. Proc. Symp. Pure Mathematics 24, AMS, Providence, 251–262 (1973)
Roth, K.F.: Developments in Heilbronn’s triangle problem. Adv. Math. 22, 364–385 (1976)
Schmidt, W.: On a problem of Heilbronn. J. London Math. Soc. 4, 545–550 (1971/1972)
Sturmfels, S: Solving systems of polynomial equations. https://math.berkeley.edu/bernd/cbms.pdf. Accessed 25 May 2019
Tal, A.: Algorithms for Heilbronn’s triangle problem. Israel Institute of Technology. Master Thesis. May 2009
Weisstein E.W.: Heilbronn triangle problem. From MathWorld - A Wolfram Web Resource. http://mathworld.wolfram.com/HeilbronnTriangleProblem.html
Yang, L., Zeng, Z.: Heilbronn problem for seven points in a planar convex body. In: Du, D.Z., Pardalos, P.M. (eds.) Minimax and Applications. Nonconvex Optimization and Its Applications, vol. 4, pp. 191–218. Springer, Boston (1995)
Yang, L., Zhang, J., Zeng, Z.: Heilbronn problem for five points. Int’l Centre Theoret. Physics preprint IC/91/252 (1991)
Yang, L., Zhang, J., Zeng, Z.: On Goldberg’s conjecture: Computing the first several Heilbronn numbers. Universität Bielefeld, Preprint 91–074 (1991)
Yang, L., Zhang, J., Zeng, Z.: On exact values of Heilbronn numbers for triangular regions. Universität Bielefeld, Preprint 91–098 (1991)
Yang, L., Zhang, J., Zeng, Z.: A conjecture on the first several Heilbronn numbers and a computation. Chinese Ann. Math. Ser. A 13, 503–515 (1992)
Yang, L., Zhang, J., Zeng, Z.: On the Heilbronn numbers of triangular regions. Acta Math Sinica 37, 678–689 (1994)
Zeng, Z., Chen, L.: On the Heilbronn optimal configuration of seven points in the square. In: Sturm, T., Zengler, C. (eds.) ADG 2008. LNCS (LNAI), vol. 6301, pp. 196–224. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21046-4_11
Zeng, Z., Chen, L.: Heilbronn configuration of eight points in the square. Manuscript. 1–74
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Zeng, Z., Chen, L. (2019). Determining the Heilbronn Configuration of Seven Points in Triangles via Symbolic Computation. In: England, M., Koepf, W., Sadykov, T., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2019. Lecture Notes in Computer Science(), vol 11661. Springer, Cham. https://doi.org/10.1007/978-3-030-26831-2_30
Download citation
DOI: https://doi.org/10.1007/978-3-030-26831-2_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-26830-5
Online ISBN: 978-3-030-26831-2
eBook Packages: Computer ScienceComputer Science (R0)