Efficient Parameter Estimation for DNA Kinetics Modeled as Continuous-Time Markov Chains | SpringerLink
Skip to main content

Efficient Parameter Estimation for DNA Kinetics Modeled as Continuous-Time Markov Chains

  • Conference paper
  • First Online:
DNA Computing and Molecular Programming (DNA 2019)

Abstract

Nucleic acid kinetic simulators aim to predict the kinetics of interacting nucleic acid strands. Many simulators model the kinetics of interacting nucleic acid strands as continuous-time Markov chains (CTMCs). States of the CTMCs represent a collection of secondary structures, and transitions between the states correspond to the forming or breaking of base pairs and are determined by a nucleic acid kinetic model. The number of states these CTMCs can form may be exponentially large in the length of the strands, making two important tasks challenging, namely, mean first passage time (MFPT) estimation and parameter estimation for kinetic models based on MFPTs. Gillespie’s stochastic simulation algorithm (SSA) is widely used to analyze nucleic acid folding kinetics, but could be computationally expensive for reactions whose CTMC has a large state space or for slow reactions. It could also be expensive for arbitrary parameter sets that occur in parameter estimation. Our work addresses these two challenging tasks, in the full state space of all non-pseudoknotted secondary structures of each reaction. In the first task, we show how to use a reduced variance stochastic simulation algorithm (RVSSA), which is adapted from SSA, to estimate the MFPT of a reaction’s CTMC. In the second task, we estimate model parameters based on MFPTs. To this end, first, we show how to use a generalized method of moments (GMM) approach, where we minimize a squared norm of moment functions that we formulate based on experimental and estimated MFPTs. Second, to speed up parameter estimation, we introduce a fixed path ensemble inference (FPEI) approach, that we adapt from RVSSA. We implement and evaluate RVSSA and FPEI using the Multistrand kinetic simulator. In our experiments on a dataset of DNA reactions, FPEI speeds up parameter estimation compared to inference using SSA, by more than a factor of three for slow reactions. Also, for reactions with large state spaces, it speeds up parameter estimation by more than a factor of two.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6634
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 8293
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A pseudoknot is a secondary structure that has at least two base pairs in which one nucleotide of a base pair is intercalated between the two nucleotides of the other base pair.

  2. 2.

    For our purpose here, we are only interested in the MFPT, so the smaller variance is good. In other contexts, the full distribution of FPTs will be of interest, and for that purpose only SSA, but not RVSSA, will be appropriate.

References

  1. Andrieu, C., Roberts, G.O.: The pseudo-marginal approach for efficient Monte Carlo computations. Ann. Stat. 37, 697–725 (2009)

    Article  MathSciNet  Google Scholar 

  2. Andronescu, M., Aguirre-Hernandez, R., Condon, A., Hoos, H.H.: RNAsoft: a suite of RNA secondary structure prediction and design software tools. Nucleic Acids Res. 31, 3416–3422 (2003)

    Article  Google Scholar 

  3. Andronescu, M., Condon, A., Hoos, H.H., Mathews, D.H., Murphy, K.P.: Computational approaches for RNA energy parameter estimation. RNA 16(12), 2304–2318 (2010)

    Article  Google Scholar 

  4. Barton, R.R., Ivey Jr., J.S.: Nelder-Mead simplex modifications for simulation optimization. Manag. Sci. 42(7), 954–973 (1996)

    Article  Google Scholar 

  5. Bonnet, G., Krichevsky, O., Libchaber, A.: Kinetics of conformational fluctuations in DNA hairpin-loops. Proc. Natl. Acad. Sci. 95(15), 8602–8606 (1998)

    Article  Google Scholar 

  6. Cherry, K.M., Qian, L.: Scaling up molecular pattern recognition with DNA-based winner-take-all neural networks. Nature 559(7714), 370 (2018)

    Article  Google Scholar 

  7. Cisse, I.I., Kim, H., Ha, T.: A rule of seven in Watson-Crick base-pairing of mismatched sequences. Nat. Struct. Mol. Biol. 19(6), 623 (2012)

    Article  Google Scholar 

  8. Doucet, A., Johansen, A.M.: A tutorial on particle filtering and smoothing: fifteen years later. Handb. Nonlinear Filter. 12(656–704), 3 (2009)

    MATH  Google Scholar 

  9. Flamm, C., Fontana, W., Hofacker, I.L., Schuster, P.: RNA folding at elementary step resolution. RNA 6, 325–338 (2000)

    Article  Google Scholar 

  10. Georgoulas, A., Hillston, J., Sanguinetti, G.: Unbiased Bayesian inference for population Markov jump processes via random truncations. Stat. Comput. 27(4), 991–1002 (2017)

    Article  MathSciNet  Google Scholar 

  11. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  12. Golightly, A., Wilkinson, D.J.: Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo. Interface Focus 1(6), 807–820 (2011)

    Article  Google Scholar 

  13. Hajiaghayi, M., Kirkpatrick, B., Wang, L., Bouchard-Côté, A.: Efficient continuous-time Markov chain estimation. In: International Conference on Machine Learning, pp. 638–646 (2014)

    Google Scholar 

  14. Hansen, L.P.: Large sample properties of generalized method of moments estimators. Econ. J. Econ. Soc. 50, 1029–1054 (1982)

    MathSciNet  MATH  Google Scholar 

  15. Hansen, L.P., Heaton, J., Yaron, A.: Finite-sample properties of some alternative GMM estimators. J. Bus. Econ. Stat. 14(3), 262–280 (1996)

    Google Scholar 

  16. Hata, H., Kitajima, T., Suyama, A.: Influence of thermodynamically unfavorable secondary structures on DNA hybridization kinetics. Nucleic Acids Res. 46(2), 782–791 (2017)

    Article  Google Scholar 

  17. Hofacker, I.L.: Vienna RNA secondary structure server. Nucleic Acids Res. 31(13), 3429–3431 (2003)

    Article  Google Scholar 

  18. Hordijk, A., Iglehart, D.L., Schassberger, R.: Discrete time methods for simulating continuous time Markov chains. Adv. Appl. Probab. 8(4), 772–788 (1976)

    Article  MathSciNet  Google Scholar 

  19. Horváth, A., Manini, D.: Parameter estimation of kinetic rates in stochastic reaction networks by the EM method. In: 2008 International Conference on BioMedical Engineering and Informatics, vol. 1, pp. 713–717. IEEE (2008)

    Google Scholar 

  20. Lehmann, E.L., Casella, G.: Theory of Point Estimation. Springer, New York (2006)

    MATH  Google Scholar 

  21. Loskot, P., Atitey, K., Mihaylova, L.: Comprehensive review of models and methods for inferences in bio-chemical reaction networks. arXiv preprint arXiv:1902.05828 (2019)

  22. Lück, A., Wolf, V.: Generalized method of moments for estimating parameters of stochastic reaction networks. BMC Syst. Biol. 10(1), 98 (2016)

    Article  Google Scholar 

  23. Mathews, D.H., Sabina, J., Zuker, M., Turner, D.H.: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288(5), 911–940 (1999)

    Article  Google Scholar 

  24. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

    Article  Google Scholar 

  25. Morrison, L.E., Stols, L.M.: Sensitive fluorescence-based thermodynamic and kinetic measurements of DNA hybridization in solution. Biochemistry 32, 3095–3104 (1993)

    Article  Google Scholar 

  26. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965)

    Article  MathSciNet  Google Scholar 

  27. Ouldridge, T.E., Louis, A.A., Doye, J.P.: Structural, mechanical, and thermodynamic properties of a coarse-grained DNA model. J. Chem. Phys. 134(8), 02B627 (2011)

    Article  Google Scholar 

  28. Schaeffer, J.M.: Stochastic simulation of the kinetics of multiple interacting nucleic acid strands. Ph.D. thesis, California Institute of Technology (2012)

    Google Scholar 

  29. Schaeffer, J.M., Thachuk, C., Winfree, E.: Stochastic simulation of the kinetics of multiple interacting nucleic acid strands. In: Phillips, A., Yin, P. (eds.) DNA 2015. LNCS, vol. 9211, pp. 194–211. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21999-8_13

    Chapter  Google Scholar 

  30. Schnoerr, D., Sanguinetti, G., Grima, R.: Approximation and inference methods for stochastic biochemical kinetics–a tutorial review. J. Phys. Math. Theor. 50(9), 093001 (2017)

    Article  MathSciNet  Google Scholar 

  31. Schreck, J.S., et al.: DNA hairpins destabilize duplexes primarily by promoting melting rather than by inhibiting hybridization. Nucleic Acids Res. 43(13), 6181–6190 (2015)

    Article  Google Scholar 

  32. Srinivas, N., et al.: On the biophysics and kinetics of toehold-mediated DNA strand displacement. Nucleic Acids Res. 41, 10641–10658 (2013)

    Article  Google Scholar 

  33. Suhov, Y., Kelbert, M.: Probability and Statistics by Example: Volume 2, Markov Chains: A Primer in Random Processes and Their Applications, vol. 2. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  34. Šulc, P., Romano, F., Ouldridge, T.E., Rovigatti, L., Doye, J.P., Louis, A.A.: Sequence-dependent thermodynamics of a coarse-grained DNA model. J. Chem. Phys. 137(13), 135101 (2012)

    Article  Google Scholar 

  35. Tang, X., Kirkpatrick, B., Thomas, S., Song, G., Amato, N.M.: Using motion planning to study RNA folding kinetics. J. Comput. Biol. 12(6), 862–881 (2005)

    Article  Google Scholar 

  36. Wackerly, D., Mendenhall, W., Scheaffer, R.L.: Mathematical Statistics with Applications. Cengage Learning, Boston (2014)

    MATH  Google Scholar 

  37. Wetmur, J.G.: Hybridization and renaturation kinetics of nucleic acids. Annu. Rev. Biophys. Bioeng. 5(1), 337–361 (1976)

    Article  Google Scholar 

  38. Xu, Z.Z., Mathews, D.H.: Experiment-assisted secondary structure prediction with RNAstructure. In: Turner, D., Mathews, D. (eds.) RNA Structure Determination: Methods and Protocols, pp. 163–176. Humana Press, New York (2016)

    Chapter  Google Scholar 

  39. Zadeh, J.N., et al.: NUPACK: analysis and design of nucleic acid systems. J. Comput. Chem. 32, 170–173 (2011)

    Article  Google Scholar 

  40. Zhang, D.Y., Winfree, E.: Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131, 17303–17314 (2009)

    Article  Google Scholar 

  41. Zhang, J.X., et al.: Predicting DNA hybridization kinetics from sequence. Nat. Chem. 10(1), 91 (2018)

    Article  Google Scholar 

  42. Zolaktaf, S., et al.: Inferring parameters for an elementary step model of DNA structure kinetics with locally context-dependent arrhenius rates. In: Brijder, R., Qian, L. (eds.) DNA 2017. LNCS, vol. 10467, pp. 172–187. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66799-7_12

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sedigheh Zolaktaf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zolaktaf, S., Dannenberg, F., Winfree, E., Bouchard-Côté, A., Schmidt, M., Condon, A. (2019). Efficient Parameter Estimation for DNA Kinetics Modeled as Continuous-Time Markov Chains. In: Thachuk, C., Liu, Y. (eds) DNA Computing and Molecular Programming. DNA 2019. Lecture Notes in Computer Science(), vol 11648. Springer, Cham. https://doi.org/10.1007/978-3-030-26807-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26807-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26806-0

  • Online ISBN: 978-3-030-26807-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics