SIMD||DNA: Single Instruction, Multiple Data Computation with DNA Strand Displacement Cascades | SpringerLink
Skip to main content

SIMD||DNA: Single Instruction, Multiple Data Computation with DNA Strand Displacement Cascades

  • Conference paper
  • First Online:
DNA Computing and Molecular Programming (DNA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11648))

Included in the following conference series:

Abstract

Typical DNA storage schemes do not allow in-memory computation, and instead transformation of the stored data requires DNA sequencing, electronic computation of the transformation, followed by synthesizing new DNA. In contrast we propose a model of in-memory computation that avoids the time consuming and expensive sequencing and synthesis steps, with computation carried out by DNA strand displacement. We demonstrate the flexibility of our approach by developing schemes for massively parallel binary counting and elementary cellular automaton Rule 110 computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6634
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 8293
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Single instruction, multiple data (SIMD) is one of the four classifications in Flynn’s taxonomy [7]. The taxonomy captures computer architecture designs and their parallelism. The four classifications are the four choices of combining single instruction (SI) or multiple instruction (MI) with single data (SD) or multiple data (MD). SI versus MI captures the number of processors/instructions modifying the data at a given time. SD versus MD captures the number of data registers being modified at a given time, each of which can store different information. Our scheme falls under SIMD, since many registers, each with different data, are affected by the same instruction.

  2. 2.

    In [24] an enumeration of all possible rules for elementary CA is given. Rule 110 refers to that enumeration.

  3. 3.

    In a sense, we realize an extension of the sticker model envisioned by [4]: “Recent research suggests that DNA ‘strand invasion’ might provide a means for the specific removal of stickers from library strands. This could give rise to library strands that act as very powerful read-write memories. Further investigation of this possibility seems worthwhile.”.

  4. 4.

    Given these properties, in practice one could choose the domain length to be from 5 to 7 nucleotides at room temperature.

  5. 5.

    Although other more complicated strand displacement mechanisms (e.g. 4-way, remote toehold, associative toehold strand displacement) could provide extra power in this architecture, they usually sacrifice the speed and increase the design complexity, so we do not include them in this work.

  6. 6.

    For example, Cas9 nickase or restriction enzyme PfAgo, uses an RNA or DNA strand as a guide and can nick at a desired location.

References

  1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021–1024 (1994)

    Article  Google Scholar 

  2. Beaver, D.: A universal molecular computer. DNA Based Comput. 27, 29–36 (1995)

    Article  Google Scholar 

  3. Boneh, D., Dunworth, C., Lipton, R.J., Sgall, J.: On the computational power of DNA. Discret. Appl. Math. 71(1–3), 79–94 (1996)

    Article  MathSciNet  Google Scholar 

  4. Braich, R.S., Chelyapov, N., Johnson, C., Rothemund, P.W.K., Adleman, L.: Solution of a 20-variable 3-SAT problem on a DNA computer. Science 296(5567), 499–502 (2002)

    Article  Google Scholar 

  5. Church, G.M., Gao, Y., Kosuri, S.: Next-generation digital information storage in DNA. Science 337(6102), 1628 (2012)

    Article  Google Scholar 

  6. Cook, M.: Universality in elementary cellular automata. Complex Syst. 15(1), 1–40 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Flynn, M.J.: Some computer organizations and their effectiveness. IEEE Trans. Comput. 21(9), 948–960 (1972)

    Article  Google Scholar 

  8. Freund, R., Kari, L., Păun, G.: DNA computing based on splicing: the existence of universal computers. Theory of Comput. Syst. 32(1), 69–112 (1999)

    Article  MathSciNet  Google Scholar 

  9. Liu, K., et al.: Detecting topological variations of DNA at single-molecule level. Nat. Commun. 10(1), 3 (2019)

    Article  Google Scholar 

  10. Neary, T., Woods, D.: P-completeness of cellular automaton rule 110. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 132–143. Springer, Heidelberg (2006). https://doi.org/10.1007/11786986_13

    Chapter  Google Scholar 

  11. Organick, L., et al.: Random access in large-scale DNA data storage. Nat. Biotechnol. 36(3), 242–248 (2018)

    Article  Google Scholar 

  12. Qian, L., Soloveichik, D., Winfree, E.: Efficient turing-universal computation with DNA polymers. In: Sakakibara, Y., Mi, Y. (eds.) DNA 2010. LNCS, vol. 6518, pp. 123–140. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18305-8_12

    Chapter  MATH  Google Scholar 

  13. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196–1201 (2011)

    Article  Google Scholar 

  14. Qian, L., Winfree, E.: Parallel and scalable computation and spatial dynamics with DNA-based chemical reaction networks on a surface. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, pp. 114–131. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11295-4_8

    Chapter  MATH  Google Scholar 

  15. Rothemund, P.W.K.: A DNA and restriction enzyme implementation of turing machines. DNA Based Comput. 27, 75–119 (1995)

    Article  MathSciNet  Google Scholar 

  16. Roweis, S., et al.: A sticker-based model for DNA computation. J. Comput. Biol. 5(4), 615–629 (1998)

    Article  Google Scholar 

  17. Scalise, D., Schulman, R.: Emulating cellular automata in chemical reaction-diffusion networks. Nat. Comput. 15(2), 197–214 (2016)

    Article  MathSciNet  Google Scholar 

  18. Seelig, G., Soloveichik, D., Zhang, Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314(5805), 1585–1588 (2006)

    Article  Google Scholar 

  19. Smith III, A.R.: Simple computation-universal cellular spaces. J. ACM 18(3), 339–353 (1971)

    Article  MathSciNet  Google Scholar 

  20. Tabatabaei, S.K., et al.: DNA punch cards: encoding data on native DNA sequences via topological modifications. bioRxiv, 10.1101/672394

  21. Thachuk, C., Winfree, E., Soloveichik, D.: Leakless DNA strand displacement systems. In: Phillips, A., Yin, P. (eds.) DNA 2015. LNCS, vol. 9211, pp. 133–153. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21999-8_9

    Chapter  MATH  Google Scholar 

  22. Wang, B., Thachuk, C., Ellington, A.D., Soloveichik, D.: The design space of strand displacement cascades with toehold-size clamps. In: Brijder, R., Qian, L. (eds.) DNA 2017. LNCS, vol. 10467, pp. 64–81. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66799-7_5

    Chapter  Google Scholar 

  23. Wang, B., Thachuk, C., Ellington, A.D., Winfree, E., Soloveichik, D.: Effective design principles for leakless strand displacement systems. Proc. Nat. Acad. Sci. 115(52), E12182–E12191 (2018)

    Article  Google Scholar 

  24. Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55, 601–644 (1983)

    Article  MathSciNet  Google Scholar 

  25. Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3(2), 103 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors were supported by NSF grants CCF-1618895 and CCF-1652824, and DARPA grant W911NF-18-2-0032. We thank Marc Riedel for suggesting the analogy to Single Instruction, Multiple Data Computers. We thank Marc Riedel and Olgica Milenkovic for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boya Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, B., Chalk, C., Soloveichik, D. (2019). SIMD||DNA: Single Instruction, Multiple Data Computation with DNA Strand Displacement Cascades. In: Thachuk, C., Liu, Y. (eds) DNA Computing and Molecular Programming. DNA 2019. Lecture Notes in Computer Science(), vol 11648. Springer, Cham. https://doi.org/10.1007/978-3-030-26807-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26807-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26806-0

  • Online ISBN: 978-3-030-26807-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics