Error-Free Stable Computation with Polymer-Supplemented Chemical Reaction Networks | SpringerLink
Skip to main content

Error-Free Stable Computation with Polymer-Supplemented Chemical Reaction Networks

  • Conference paper
  • First Online:
DNA Computing and Molecular Programming (DNA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11648))

Included in the following conference series:

  • 1044 Accesses

Abstract

When disallowing error, traditional chemical reaction networks (CRNs) are very limited in computational power: Angluin et al. and Chen et al. showed that only semilinear predicates and functions are stably computable by CRNs. Qian et al. and others have shown that polymer-supplemented CRNs (psCRNs) are capable of Turing-universal computation. However, their model requires that inputs are pre-loaded on the polymers, in contrast with the traditional convention that inputs are represented by counts of molecules in solution. Here, we show that psCRNs can stably simulate Turing-universal computations even with solution-based inputs. However, such simulations use a unique “leader” polymer per input type and thus involve many slow bottleneck reactions. We further refine the polymer-supplemented CRN model to allow for anonymous polymers, that is, multiple functionally-identical copies of a polymer, and provide an illustrative example of how bottleneck reactions can be avoided in this new model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6634
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 8293
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochastic chemical reaction networks. Nat. Comput. 7(4), 615–633 (2008)

    Article  MathSciNet  Google Scholar 

  2. Chen, H.-L., Doty, D., Soloveichik, D.: Deterministic function computation with chemical reaction networks. Nat. Comput. 13, 517–534 (2014)

    Article  MathSciNet  Google Scholar 

  3. Angluin, D., Aspnes, J., Eisenstat, D.: Stably computable predicates are semilinear. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Principles of Distributed Computing, PODC 2006, New York, pp. 292–299. ACM Press (2006)

    Google Scholar 

  4. Cummings, R., Doty, D., Soloveichik, D.: Probability 1 computation with chemical reaction networks. Nat. Comput. 15(2), 245–261 (2014)

    Article  MathSciNet  Google Scholar 

  5. Qian, L., Soloveichik, D., Winfree, E.: Efficient turing-universal computation with DNA polymers. In: Sakakibara, Y., Mi, Y. (eds.) DNA 2010. LNCS, vol. 6518, pp. 123–140. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18305-8_12

    Chapter  MATH  Google Scholar 

  6. Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochastic chemical reaction networks. Nat. Comput. 7, 615–633 (2008)

    Article  MathSciNet  Google Scholar 

  7. Bennett, C.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)

    Article  MathSciNet  Google Scholar 

  8. Bennett, C.: The thermodynamics of computation - a review. Int. J. Theor. Phys. 21(12), 905–940 (1981)

    Article  Google Scholar 

  9. Johnson, R., Winfree, E.: Verifying polymer reaction networks using bisimulation (2014)

    Google Scholar 

  10. Cardelli, L., Zavattaro, G.: Turing universality of the biochemical ground form. Math. Struct. Comput. Sci. 20, 45–73 (2010)

    Article  MathSciNet  Google Scholar 

  11. Jiang, H., Riedel, M., Parhi, K.: Synchronous sequential computation with molecular reactions. In: Proceedings of the 48th Design Automation Conference, DAC 2011, New York, pp. 836–841. ACM (2011)

    Google Scholar 

  12. Lakin, M.R., Phillips, A.: Modelling, simulating and verifying turing-powerful strand displacement systems. In: Cardelli, L., Shih, W. (eds.) DNA 2011. LNCS, vol. 6937, pp. 130–144. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23638-9_12

    Chapter  MATH  Google Scholar 

  13. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distrib. Comput. 18, 235–253 (2006)

    Article  Google Scholar 

  14. Chatzigiannakis, I., Michail, O., Nikolaou, S., Pavlogiannis, A., Spirakis, P.G.: Passively mobile communicating machines that use restricted space. In: Proceedings of the 7th ACM ACM SIGACT/SIGMOBILE International Workshop on Foundations of Mobile Computing, FOMC 2011, New York, pp. 6–15. ACM (2011)

    Google Scholar 

  15. Chen, H.-L., Cummings, R., Doty, D., Soloveichik, D.: Speed faults in computation by chemical reaction networks. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 16–30. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45174-8_2

    Chapter  Google Scholar 

  16. Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols with a leader. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 61–75. Springer, Heidelberg (2006). https://doi.org/10.1007/11864219_5

    Chapter  Google Scholar 

  17. Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A 104(9), 1876–1889 (2000)

    Article  Google Scholar 

  18. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allison Tai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tai, A., Condon, A. (2019). Error-Free Stable Computation with Polymer-Supplemented Chemical Reaction Networks. In: Thachuk, C., Liu, Y. (eds) DNA Computing and Molecular Programming. DNA 2019. Lecture Notes in Computer Science(), vol 11648. Springer, Cham. https://doi.org/10.1007/978-3-030-26807-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26807-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26806-0

  • Online ISBN: 978-3-030-26807-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics