Parameters Optimization for Support Vector Regression Based Indoor Visible Light Localization | SpringerLink
Skip to main content

Parameters Optimization for Support Vector Regression Based Indoor Visible Light Localization

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11643))

Included in the following conference series:

  • 1586 Accesses

Abstract

In this paper, we optimize parameters of indoor visible light localization system based on support vector regression algorithm to achieve higher positioning accuracy. Additionally, some other popular supervised machine learning algorithms such as linear regression, artificial neural networks, and k-nearest neighbors are also implemented. Then, we compare these solutions together to demonstrate the superiority of our approach. This solution is simulated in a hypothetical space of 5 m × 5 m × 3 m. To obtain satisfactory performance, a system of four LED lights and a photodiode are used to transmit and receive optical power, respectively. In the proposed system, the location estimation process is divided into two distinct sub-processes: offline stage and online stage. In the offline stage, data collection and data training are carried out. The results obtained from this stage and the current data in the online stage are the base to determine the current location of the object carrying the photodiode. The simulation results prove that our approach can achieve positioning accuracy of almost 7.4 cm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vanus, J., Stratil, T., Martinek, R., Bilik, P., Zidek, J.: The possibility of using VLC data transfer in the smart home, vol. 49, no. 25, pp. 176–181. Elsivier (2016). https://doi.org/10.1016/j.ifacol.2016.12.030

  2. Pathak, P.H., Feng, X., Hu, P., Mohapatra, P.: Visible light communication, networking, and sensing: a survey, potential and challenges. IEEE Commun. Surv. Tutorials 17(4), 2047–2077 (2015). https://doi.org/10.1109/comst.2015.2476474

  3. Luo, J., Fan, L., Li, H.: Indoor positioning systems based on visible light communication: state of the art. IEEE Commun. Surv. Tutorials 19(4), 2871–2893 (2017). https://doi.org/10.1109/comst.2017.2743228

    Article  Google Scholar 

  4. Zou, H., Jin, M., Jiang, H., Xie, L., Spanos, C.J.: WinIPS: WiFi-based non-intrusive indoor positioning system with online radio map construction and adaptation. IEEE Trans. Wirel. Commun. 16(12), 8118–8130 (2017). https://doi.org/10.1109/TWC.2017.2757472

    Article  Google Scholar 

  5. Haute, T.V., et al.: Platform for benchmarking of RF-based indoor localization solutions. IEEE Commun. Mag. 53(9), 126–133 (2015). https://doi.org/10.1109/MCOM.2015.7263356

    Article  Google Scholar 

  6. Keskin, M.F., Sezer, A.D., Gezici, S.: Localization via visible light systems. Proc. IEEE 106(6), 1063–1088 (2018). https://doi.org/10.1109/JPROC.2018.2823500

    Article  Google Scholar 

  7. Park, J.K., Woo, T., Kim, M., Kim, J.T.: Hadamard matrix design for a low-cost indoor positioning system in visible light communication. IEEE Photon. J. 9(2), 1–10 (2017). https://doi.org/10.1109/jphot.2017.2667038. Art no. 7801710

  8. Xie, B., Chen, K., Tan, G., Lu, M., Liu, Y., Wu, J., et al.: LIPS: a light intensity-based positioning system for indoor environments. ACM Trans. Sen. Netw. 12, 1–27 (2016)

    Article  Google Scholar 

  9. Nadeem, U., Hassan, N.U., Pasha, M.A., Yuen, C.: Highly accurate 3D wireless indoor positioning system using white LED lights. Electron. Lett. 50, 828–830 (2014)

    Article  Google Scholar 

  10. Jung, S.Y., Hann, S., Park, C.S.: TDOA-based optical wireless indoor localization using LED ceiling lamps. IEEE Trans. Consum. Electron. 57, 1592–1597 (2011)

    Article  Google Scholar 

  11. Smola, A.: Regression estimation with support vector learning machines. Technical report, Technische Universität München (1996)

    Google Scholar 

  12. Zhang, L., Li, Y., Gu, Y., Yang, W.: An efficient machine learning approach for indoor localization. China Commun. 14(11), 141–150 (2017). https://doi.org/10.1109/CC.2017.8233657

    Article  Google Scholar 

  13. Shi, K., Ma, Z., Zhang, R., Hu, W., Chen, H.: Support vector regression based indoor location in IEEE 802.11 environments. Mob. Inf. Syst. 2015, 14 p. (2015). https://doi.org/10.1155/2015/295652. Article ID 295652

  14. Gradim, P., Fonseca, L.N.A., Mohamed, R.E.: On the usage of machine learning techniques to improve position accuracy in visible light positioning systems. In: 2018 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), Budapest, pp. 1–6 (2018). https://doi.org/10.1109/csndsp.2018.8471773

  15. Saadi, M., Ahmad, T., Zhao, Y., Wuttisttikulkij, L.: An LED based indoor localization system using k-means clustering. In: 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA), Anaheim, CA, pp. 246–252 (2016). https://doi.org/10.1109/icmla.2016.0048

  16. Shawky, S., El-Shimy, M.A., El-Sahn, Z.A., Rizk, M.R.M., Aly, M.H.: Improved VLC-based indoor positioning system using a regression approach with conventional RSS techniques. In: 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, pp. 904–909 (2017). https://doi.org/10.1109/iwcmc.2017.7986406

  17. Zhang, X., Duan, J., Fu, Y., Shi, A.: Theoretical accuracy analysis of indoor visible light communication positioning system based on received signal strength indicator. J. Lightwave Technol. 32(21), 4180–4186 (2014). https://doi.org/10.1109/jlt.2014.2349530

    Article  Google Scholar 

  18. Ghassemlooy, Z., Popoola, W., Rajbhandari, S.: Optical Wireless Communications, System and Channel Modeling with MATLAB. CRC Press, Boca Raton (2012). ISBN 9781439851883

    Google Scholar 

  19. Smola, J., Schölkopf, B.: A tutorial on support vector regression. NeuroCOLT2 Technical report Series NC2-TR-1998-030 (1998)

    Google Scholar 

Download references

Acknowledgments

This work was supported by Korea Hydro & Nuclear Power company through the project “Nuclear Innovation Center for Haeoleum Alliance”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheolkeun Ha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tran, H.Q., Ha, C. (2019). Parameters Optimization for Support Vector Regression Based Indoor Visible Light Localization. In: Huang, DS., Bevilacqua, V., Premaratne, P. (eds) Intelligent Computing Theories and Application. ICIC 2019. Lecture Notes in Computer Science(), vol 11643. Springer, Cham. https://doi.org/10.1007/978-3-030-26763-6_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26763-6_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26762-9

  • Online ISBN: 978-3-030-26763-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics