Speaking Style Based Apparent Personality Recognition | SpringerLink
Skip to main content

Speaking Style Based Apparent Personality Recognition

  • Conference paper
  • First Online:
Speech and Computer (SPECOM 2019)

Abstract

In this study, we investigate the problem of apparent personality recognition using person’s voice, or more precisely, the way he or she speaks. Based on the style transfer idea in deep neural net image processing, we developed a system capable of speaking style extraction from recorded speech utterances, which then uses this information to estimate the so called Big-Five personality traits. The latent speaking style space is represented by the Gram matrix of convoluted acoustic features. We used a database with labels of personality traits perceived by other people (first impression). The experimental results showed that the proposed system achieves state of the art results for the task of audio based apparent personality recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boyle, G., Helmes, E.: Methods of personality assessment. In: The Cambridge Handbook of Personality Psychology, p. 110. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  2. Celli, F., Rossi, L.: The role of emotional stability in twitter conversations. In: Proceedings of the Workshop on Semantic Analysis in Social Media, pp. 10–17. Association for Computational Linguistics (2012)

    Google Scholar 

  3. Chastagnol, C., Devillers, L.: Personality traits detection using a parallelized modified SFFS algorithm. In: Thirteenth Annual Conference of the International Speech Communication Association (2012)

    Google Scholar 

  4. Chu, W.T., Wu, Y.L.: Image style classification based on learnt deep correlation features. IEEE Trans. Multimed. 20(9), 2491–2502 (2018)

    Article  Google Scholar 

  5. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

  6. Cohen, A.S., Elvevåg, B.: Automated computerized analysis of speech in psychiatric disorders. Curr. Opin. Psychiatry 27(3), 203 (2014)

    Article  Google Scholar 

  7. Costa Jr., P.T., McCrae, R.R.: Domains and facets: hierarchical personality assessment using the revised NEO personality inventory. J. Pers. Assess. 64(1), 21–50 (1995)

    Article  Google Scholar 

  8. Denscombe, M.: The Good Research Guide: For Small-Scale Social Research Projects. McGraw-Hill Education, London (2014)

    Google Scholar 

  9. Escalante, H.J., et al.: Explaining first impressions: modeling, recognizing, and explaining apparent personality from videos. arXiv preprint arXiv:1802.00745 (2018)

  10. Eyben, F., Wöllmer, M., Schuller, B.: Opensmile: the munich versatile and fast open-source audio feature extractor. In: Proceedings of the 18th ACM International Conference on Multimedia, pp. 1459–1462. ACM (2010)

    Google Scholar 

  11. Gatys, L.A., Ecker, A.S., Bethge, M.: A neural algorithm of artistic style. arXiv preprint arXiv:1508.06576 (2015)

  12. Gürpinar, F., Kaya, H., Salah, A.A.: Multimodal fusion of audio, scene, and face features for first impression estimation. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 43–48. IEEE (2016)

    Google Scholar 

  13. Ivanov, A., Chen, X.: Modulation spectrum analysis for speaker personality trait recognition. In: Thirteenth Annual Conference of the International Speech Communication Association (2012)

    Google Scholar 

  14. Kaya, H., Gürpınar, F., Salah, A.A.: Multi-modal score fusion and decision trees for explainable automatic job candidate screening from video CVs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–9 (2017)

    Google Scholar 

  15. Kaya, H., Salah, A.A.: Multimodal personality trait analysis for explainable modeling of job interview decisions. In: Explainable and Interpretable Models in Computer Vision and Machine Learning, pp. 255–275. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98131-4

  16. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  17. Mairesse, F., Walker, M.A., Mehl, M.R., Moore, R.K.: Using linguistic cues for the automatic recognition of personality in conversation and text. J. Artif. Intell. Res. 30, 457–500 (2007)

    Article  Google Scholar 

  18. Majumder, N., Poria, S., Gelbukh, A., Cambria, E.: Deep learning-based document modeling for personality detection from text. IEEE Intell. Syst. 32(2), 74–79 (2017)

    Article  Google Scholar 

  19. Matthews, G., Deary, I.J., Whiteman, M.C.: Personality Traits. Cambridge University Press, New York (2003)

    Google Scholar 

  20. Mohammadi, G., Vinciarelli, A.: Automatic personality perception: prediction of trait attribution based on prosodic features. IEEE Trans. Affect. Comput. 3(3), 273–284 (2012)

    Google Scholar 

  21. Montacié, C., Caraty, M.J.: Pitch and intonation contribution to speakers’ traits classification. In: Thirteenth Annual Conference of the International Speech Communication Association (2012)

    Google Scholar 

  22. Pianesi, F., Mana, N., Cappelletti, A., Lepri, B., Zancanaro, M.: Multimodal recognition of personality traits in social interactions. In: Proceedings of the 10th International Conference on Multimodal Interfaces, pp. 53–60. ACM (2008)

    Google Scholar 

  23. Piwek, L., Ellis, D.A., Andrews, S., Joinson, A.: The rise of consumer health wearables: promises and barriers. PLoS Med. 13(2), e1001953 (2016)

    Article  Google Scholar 

  24. Polzehl, T., Moller, S., Metze, F.: Automatically assessing personality from speech. In: 2010 IEEE Fourth International Conference on Semantic Computing, pp. 134–140. IEEE (2010)

    Google Scholar 

  25. Sanchez, M.H., Lawson, A., Vergyri, D., Bratt, H.: Multi-system fusion of extended context prosodic and cepstral features for paralinguistic speaker trait classification. In: Thirteenth Annual Conference of the International Speech Communication Association (2012)

    Google Scholar 

  26. Schuller, B., et al.: The interspeech 2012 speaker trait challenge. In: Thirteenth Annual Conference of the International Speech Communication Association (2012)

    Google Scholar 

  27. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  28. Vinciarelli, A., Mohammadi, G.: A survey of personality computing. IEEE Trans. Affect. Comput. 5(3), 273–291 (2014)

    Article  Google Scholar 

  29. Vinciarelli, A., et al.: Bridging the gap between social animal and unsocial machine: a survey of social signal processing. IEEE Trans. Affect. Comput. 3(1), 69–87 (2012)

    Article  Google Scholar 

  30. Yu, J., Markov, K.: Deep learning based personality recognition from facebook status updates. In: 2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST), pp. 383–387. IEEE (2017)

    Google Scholar 

  31. Zhang, C.L., Zhang, H., Wei, X.S., Wu, J.: Deep bimodal regression for apparent personality analysis. In: European Conference on Computer Vision, pp. 311–324. Springer (2016). https://doi.org/10.1007/978-3-319-49409-8_25

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianguo Yu , Konstantin Markov or Alexey Karpov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, J., Markov, K., Karpov, A. (2019). Speaking Style Based Apparent Personality Recognition. In: Salah, A., Karpov, A., Potapova, R. (eds) Speech and Computer. SPECOM 2019. Lecture Notes in Computer Science(), vol 11658. Springer, Cham. https://doi.org/10.1007/978-3-030-26061-3_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26061-3_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26060-6

  • Online ISBN: 978-3-030-26061-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics