Virtual Environment for Teaching and Learning Robotics Applied to Industrial Processes | SpringerLink
Skip to main content

Virtual Environment for Teaching and Learning Robotics Applied to Industrial Processes

  • Conference paper
  • First Online:
Augmented Reality, Virtual Reality, and Computer Graphics (AVR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11614))

Abstract

This paper presents a structured application with virtual environments that emulate industrial processes that interact with the virtualized ScorBot ER-4U robot with the help of CAD software and texturing using other software. The manipulator is controlled from Matlab in response to the established modeling, communication is generated in two ways since both the real and the virtual manipulator act at the same time. Manipulator libraries allow data to be obtained in the encoders located in each motor and set the manipulator in a desired position. The real movement is replicated in the virtual environment for which a shared memory is used that allows access to a record inside the RAM of the computer that can be accessed from any program once in dynamic-link library (dll) is loaded.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8464
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andaluz, V.H., Ortiz, J.S., Sanchéz, J.S.: Bilateral control of a robotic arm through brain signals. In: De Paolis, L.T., Mongelli, A. (eds.) AVR 2015. LNCS, vol. 9254, pp. 355–368. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22888-4_26

    Chapter  Google Scholar 

  2. Ortiz, J., et al.: Modeling and kinematic nonlinear control of aerial mobile manipulators. In: Zeghloul, S., Romdhane, L., Laribi, M. (eds.) Computational Kinematics, pp. 87–95. Springer, Cham (2017)

    Google Scholar 

  3. Quevedo, W.X., et al.: Virtual reality system for training in automotive mechanics. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10324, pp. 185–198. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60922-5_14

    Chapter  Google Scholar 

  4. Ortiz, J, et al.: Teaching-learning process through VR applied to automotive engineering. In: Proceedings of the 2017 9th International Conference on Education Technology and Computers - ICETC 2017 (2017). https://doi.org/10.1145/3175536.3175580

  5. Hernandez, Y., Ramirez, M.: Virtual reality systems for training improvement in electrical distribution substations. In: 2016 IEEE 16th International Conference on Advanced Learning Technologies (ICALT) (2016). https://doi.org/10.1109/icalt.2016.141

  6. da Silva Netto, A., de Fatima Queiroz Vieira, M.: Virtual reality training environment a proposed architecture. In: 2010 IEEE International Conference on Virtual Environments, Human-Computer Interfaces and Measurement Systems (2010). https://doi.org/10.1109/vecims.2010.5609364

  7. Galvan-Bobadilla, I., Ayala-Garcia, A., Rodriguez-Gallegos, E., Arroyo-Figueroa, G.: Virtual reality training system for the maintenance of underground lines in power distribution system. In: Third International Conference on Innovative Computing Technology (INTECH 2013) (2013). https://doi.org/10.1109/intech.2013.6653713

  8. Ciger, J., Sbaouni, M., Segot, C.: Virtual reality training of manual procedures in the nuclear sector. In: 2015 IEEE Virtual Reality (VR) (2015). https://doi.org/10.1109/vr.2015.7223455

  9. Andaluz, V.H., et al.: Training of tannery processes through virtual reality. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10324, pp. 75–93. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60922-5_6

    Chapter  Google Scholar 

  10. Andaluz, V.H., Patricio, C., José, N., José, A., Shirley, L.: Virtual environments for motor fine skills rehabilitation with force feedback. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10324, pp. 94–105. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60922-5_7

    Chapter  Google Scholar 

  11. Ortiz, J.S., et al.: Realism in audiovisual stimuli for phobias treatments through virtual environments. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10325, pp. 188–201. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60928-7_16

    Chapter  Google Scholar 

  12. Mourning, R, Tang, Y.: Virtual reality social training for adolescents with high-functioning autism. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (2016). https://doi.org/10.1109/smc.2016.7844996

  13. Carvajal, C.P., Proaño, L., Pérez, J.A., Pérez, S., Ortiz, J.S., Andaluz, V.H.: Robotic applications in virtual environments for children with autism. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10325, pp. 175–187. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60928-7_15

    Chapter  Google Scholar 

  14. Castellanos, E.X., García-Sánchez, C., Llanganate, W.Bl., Andaluz, V.H., Quevedo, W.X.: Robots coordinated control for service tasks in virtual reality environments. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10324, pp. 164–175. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60922-5_12

    Chapter  Google Scholar 

  15. Andaluz, V.H., Carvajal, C.P., Pérez, J.A., Proaño, L.E.: Kinematic nonlinear control of aerial mobile manipulators. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds.) ICIRA 2017. LNCS (LNAI), vol. 10464, pp. 740–749. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65298-6_66

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors would like to thanks to the Corporación Ecuatoriana para el Desarrollo de la Investigación y Academia–CEDIA for the financing given to research, development, and innovation, through the CEPRA projects, especially the project CEPRA-XI-2017-06; Control Coordinado Multi-operador aplicado a un robot Manipulador Aéreo; also to Universidad de las Fuerzas Armadas ESPE, Universidad Técnica de Ambato, Escuela Superior Politécnica de Chimborazo, Universidad Nacional de Chimborazo, and Grupo de Investigación ARSI, for the support to develop this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Víctor H. Andaluz , José A. Pérez or Christian P. Carvajal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andaluz, V.H., Pérez, J.A., Carvajal, C.P., Ortiz, J.S. (2019). Virtual Environment for Teaching and Learning Robotics Applied to Industrial Processes. In: De Paolis, L., Bourdot, P. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2019. Lecture Notes in Computer Science(), vol 11614. Springer, Cham. https://doi.org/10.1007/978-3-030-25999-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25999-0_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25998-3

  • Online ISBN: 978-3-030-25999-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics