Succinct Data Structures for Families of Interval Graphs | SpringerLink
Skip to main content

Succinct Data Structures for Families of Interval Graphs

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 2019)

Abstract

We consider the problem of designing succinct data structures for interval graphs with n vertices while supporting degree, adjacency, neighborhood and shortest path queries in optimal time. Towards showing succinctness, we first show that at least \(n\log _2{n} - 2n\log _2\log _2 n - O(n)\) bits. are necessary to represent any unlabeled interval graph G with n vertices, answering an open problem of Yang and Pippenger [Proc. Amer. Math. Soc. 2017]. This is augmented by a data structure of size \(n\log _2{n} +O(n)\) bits while supporting not only the above queries optimally but also capable of executing various combinatorial algorithms (like proper coloring, maximum independent set etc.) on interval graphs efficiently. Finally, we extend our ideas to other variants of interval graphs, for example, proper/unit, k-improper interval graphs, and circular-arc graphs, and design succinct data structures for these graph classes as well along with supporting queries on them efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Throughout the paper, we use \(\log \) to denote the logarithm to the base 2.

References

  1. Aleardi, L.C., Devillers, O., Schaeffer, G.: Succinct representations of planar maps. Theor. Comput. Sci. 408(2–3), 174–187 (2008)

    Article  MathSciNet  Google Scholar 

  2. Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J., Schieber, B.: A unified approach to approximating resource allocation and scheduling. J. ACM 48(5), 1069–1090 (2001)

    Article  MathSciNet  Google Scholar 

  3. Benser, S.: On the topology of the genetic fine structure. Proc. Nat. Acad. Sci. 45, 1607–1620 (1959)

    Article  Google Scholar 

  4. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using pq-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976)

    Article  MathSciNet  Google Scholar 

  5. Bose, P., He, M., Maheshwari, A., Morin, P.: Succinct orthogonal range search structures on a grid with applications to text indexing. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 98–109. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03367-4_9

    Chapter  MATH  Google Scholar 

  6. Brodal, G.S., Davoodi, P., Rao, S.S.: On space efficient two dimensional range minimum data structures. Algorithmica 63(4), 815–830 (2012)

    Article  MathSciNet  Google Scholar 

  7. Chen, D.Z., Lee, D.T., Sridhar, R., Sekharan, C.N.: Solving the all-pair shortest path query problem on interval and circular-arc graphs. Networks 31(4), 249–258 (1998)

    Article  MathSciNet  Google Scholar 

  8. Clark, D.R., Munro, J.I.: Efficient suffix trees on secondary storage. In: Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 383–391 (1996)

    Google Scholar 

  9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  10. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  11. Farzan, A., Kamali, S.: Compact navigation and distance oracles for graphs with small treewidth. Algorithmica 69(1), 92–116 (2014)

    Article  MathSciNet  Google Scholar 

  12. Farzan, A., Munro, J.I.: Succinct encoding of arbitrary graphs. Theor. Comput. Sci. 513, 38–52 (2013)

    Article  MathSciNet  Google Scholar 

  13. Finch, S.R.: Mathematical Constants. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  14. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011)

    Article  MathSciNet  Google Scholar 

  15. Golumbic, M.C.: Interval graphs and related topics. Discrete Math. 55(2), 113–121 (1985)

    Article  MathSciNet  Google Scholar 

  16. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs (2004)

    Google Scholar 

  17. Golumbic, M.C., Shamir, R.: Complexity and algorithms for reasoning about time: a graph-theoretic approach. J. ACM 40(5), 1108–1133 (1993)

    Article  MathSciNet  Google Scholar 

  18. Golynski, A., Munro, J.I., Rao, S.S.: Rank/select operations on large alphabets: a tool for text indexing. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, pp. 368–373 (2006)

    Google Scholar 

  19. Habib, M., McConnell, R.M., Paul, C., Viennot, L.: Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing. Theor. Comput. Sci. 234(1–2), 59–84 (2000)

    Article  MathSciNet  Google Scholar 

  20. Hajós, G.: Über eine art von graphen. Int. Math. Nachr. 11, 1607–1620

    Google Scholar 

  21. Hanlon, P.: Counting interval graphs. Trans. Am. Math. Soc. 272(2), 383–426 (1982)

    Article  MathSciNet  Google Scholar 

  22. Klavzar, S., Petkovsek, M.: Intersection graphs of halflines and halfplanes. Discrete Math. 66(1–2), 133–137 (1987)

    Article  MathSciNet  Google Scholar 

  23. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static trees. SIAM J. Comput. 31(3), 762–776 (2001)

    Article  MathSciNet  Google Scholar 

  24. Munro, J.I., Wu, K.: Succinct data structures for chordal graphs. In: 29th International Symposium on Algorithms and Computation, ISAAC 2018, pp. 67:1–67:12 (2018). https://doi.org/10.4230/LIPIcs.ISAAC.2018.67

  25. Roberts, F.S.: Indifference graphs. In: Harary, F. (ed.) Proof Techniques in Graph Theory (1969)

    Google Scholar 

  26. Sloane, N.J.E.: The on-line encyclopedia of integer sequences. http://oeis.org

  27. Yang, J.C., Pippenger, N.: On the enumeration of interval graphs. Proc. Am. Math. Soc. Ser. B 4(1), 1–3 (2017)

    Article  MathSciNet  Google Scholar 

  28. Zhang, P., et al.: An algorithm based on graph theory for the assembly of contigs in physical mapping of DNA. Bioinformatics 10(3), 309–317 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seungbum Jo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Acan, H., Chakraborty, S., Jo, S., Satti, S.R. (2019). Succinct Data Structures for Families of Interval Graphs. In: Friggstad, Z., Sack, JR., Salavatipour, M. (eds) Algorithms and Data Structures. WADS 2019. Lecture Notes in Computer Science(), vol 11646. Springer, Cham. https://doi.org/10.1007/978-3-030-24766-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24766-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24765-2

  • Online ISBN: 978-3-030-24766-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics