Geomatics for Environmental Monitoring, Analysis and Forecast | SpringerLink
Skip to main content

Geomatics for Environmental Monitoring, Analysis and Forecast

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2019 (ICCSA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11622))

Included in the following conference series:

Abstract

We suggest geomatic technology for monitoring natural processes, which is implemented on three web GIS platforms: (1) http://distcomp.ru/geo/arctic/—monitoring the hydroecological situation in the Arctic, (2) http://distcomp.ru/geo/2/, http://distcomp.ru/geo/3/—analysis of seismic fields and (3) http://distcomp.ru/geo/prognosis/—automatic prediction of earthquakes. Platforms combine two levels of geodata analysis. The first level supports automatic data processing and simple analysis tools that are suitable for any Internet user. The second level is designed for detailed data analysis performed by a specialist. Thus, users of the platform have the opportunity to receive preliminary information about the processes in the environment and conduct research.

The work was supported by Russian Foundation for Basic Research, project No. 17-07- 00494.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tsou, M.H.: Integrating Web-based GIS and image processing tools for environmental monitoring and natural resource management. J. Geogr. Syst. 6(2), 155–174 (2004)

    Article  Google Scholar 

  2. Dangermond, J.: Geodesign and GIS–designing our futures. In: Peer Reviewed Proceedings of Digital Landscape Architecture, Anhalt University of Applied Science, Germany (2010)

    Google Scholar 

  3. Harder, C.: The ArcGIS Book: 10 Big Ideas about Applying Geography to Your World. Esri Press, Redlands (2015)

    Google Scholar 

  4. Kattsov, V.M., Porfir’ev, B.N.: Climatic changes in the Arctic: consequences for the environment and the economy. Arct. Ecol. Econ. 2(6), 66–78 (2012)

    Google Scholar 

  5. Overland, J.E., Wang, M., Walsh, J.E., Stroeve, J.C.: Future Arctic climate changes: adaptation and mitigation time scales. Earth’s Future 2(2), 68–74 (2014)

    Article  Google Scholar 

  6. Anisimov, O.A.: Potential feedback of thawing permafrost to the global climate system through methane emission. Environ. Res. Lett. 2(4) (2007)

    Article  Google Scholar 

  7. Zelenina, L.I., Fed’kushova, S.I.: Prediction and consequences of climate fluctuation of the Arctic region. Arktikai Sever 5, 1–5 (2012). (In Russian)

    Google Scholar 

  8. Gitis, V., Derendyaev, A., Weinstock, A.: Web-based GIS technologies for monitoring and analysis of spatio-temporal processes. Int. J. Web Inf. Syst. 12(1), 102–124 (2016)

    Article  Google Scholar 

  9. Gitis, V.G., et al.: Technology of monitoring and analysis of the hydrometeorological situation in the Arctic. J. Commun. Technol. Electron. 63(6), 691–705 (2018)

    Article  Google Scholar 

  10. Zatzepa, S.N., et al.: Modelling of oil spills in sea for planning on guaranteeing of ecological safety by realization of oil and gas plans. Part 1: methodology. ProblemyArktikiiAntarktiki 4(106), 27–39 (2015)

    Google Scholar 

  11. Huang, Q., Sobolev, G.A., Nagao, T.: Characteristics of the seismic quiescence and activation patterns before the M = 7.2 Kobe earthquake, January 17,1995. Tectonophysics 337(1–2), 99–116 (2001)

    Article  Google Scholar 

  12. Kagan, Y.Y., Jackson, D.D.: New seismic gap hypothesis: five years after. J. Geophys. Res. Solid Earth 100(B3), 3943–3959 (1995)

    Article  Google Scholar 

  13. Chen, C.C., et al.: The 1999 Chi-Chi, Taiwan, earthquake as a typical example of seismic activation and quiescence. Geophys. Res. Lett. 32(22) (2005). https://doi.org/10.1029/2005GL023991

    Article  Google Scholar 

  14. Gitis, V.G., Derendyaev, A.B., Pirogov, S.A., Spokoiny, V.G., Yurkov, E.F.: Earthquake prediction using the fields estimated by an adaptive algorithm. In: Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics, Article No. 30 (2017)

    Google Scholar 

  15. Keilis-Borok, V., Soloviev, A.A. (eds.): Nonlinear Dynamics of the Lithosphere and Earthquake Prediction. Springer, Heidelberg (2013)

    Google Scholar 

  16. Kossobokov, V., Shebalin, P.: Earthquake prediction. In: Keilis-Borok, V.I., Soloviev, A.A. (eds.) Nonlinear Dynamics of the Lithosphere and Earthquake Prediction. SSSYN, pp. 141–207. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-662-05298-3_4

    Chapter  Google Scholar 

  17. Zavyalov, A.D.: Extended Forecast of Earthquakes: Fundamentals, Methodology, Realization. Nauka, Moscow (2006). (in Russian)

    Google Scholar 

  18. Kossobokov, V.G.: User manual for M8. In: Healy, J.H., Keilis-Borok, V.I., Lee, W.H.K. (eds.) Algorithms for Earthquake Statistics and Prediction, vol. 6, pp. 167–222 (1997)

    Google Scholar 

  19. Bhatia, A., Pasari, S., Mehta, A.: Earthquake forecasting using artificial neural networks. In: International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences (2018)

    Google Scholar 

  20. Rhoades, D.A.: Application of the EEPAS model to forecasting earthquakes of moderate magnitude in southern California. Seismol. Res. Lett. 78(1), 110–115 (2007)

    Article  Google Scholar 

  21. Bishop, C.M.: Machine Learning and Pattern Recognition. Information Science and Statistics. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  22. Gitis, V.G., Derendyaev, A.B.: Earthquake prediction learning using the least alarm method. J. Commun. Technol. Electron. 63(6), 680–690 (2018)

    Article  Google Scholar 

  23. Khan, S.S., Madden, M.G.: A survey of recent trends in one class classification. In: Coyle, L., Freyne, J. (eds.) AICS 2009. LNCS (LNAI), vol. 6206, pp. 188–197. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17080-5_21

    Chapter  Google Scholar 

  24. Molchan, G.M.: Earthquake prediction as a decision-making problem. Pure. appl. Geophys. 149(1), 233–247 (1997)

    Article  Google Scholar 

  25. Kossobokov, V.G., Romashkova, L.L., Keilis-Borok, V.I., Healy, J.H.: Testing earthquake prediction algorithms: statistically significant advance prediction of the largest earthquakes in the Circum-Pacific, 1992–1997. Phys. Earth Planet. Inter. 111(3–4), 187–196 (1999)

    Article  Google Scholar 

  26. Gutenberg, B., Richter, C.: Frequency of earthquakes in California. Bull. Seismol. Soc. Am. 34(4), 185–188 (1944)

    Google Scholar 

  27. International Seismological Centre: Internatl. Seismol. Cent., Thatcham, United Kingdom (2015). http://www.isc.ac.uk

  28. Masse, R.P., Needham, R.E.: NEIC-The National Earthquake Information Center. Earthquakes Volcanoes (USGS) 21(1), 4–44 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander B. Derendyaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gitis, V.G., Derendyaev, A.B. (2019). Geomatics for Environmental Monitoring, Analysis and Forecast. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11622. Springer, Cham. https://doi.org/10.1007/978-3-030-24305-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24305-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24304-3

  • Online ISBN: 978-3-030-24305-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics