Abstract
Flood-hazard map delineation is an important task in planning land management activities. This evaluation is usually based on coupled hydraulic/hydrological models, which often require time consuming and expensive measurement campaigns in order to estimate the necessary distributed physical information for their implementation (e.g. digital elevation models, land cover and geological maps); moreover, the observed effects of flood events are needed for their calibration and validation. The obtained flooded maps can allow to perform geomorphic DEM-based procedure, which is a valid tool useful for the rapid identification and mapping of flood-prone areas; in addition remote sensing is a reliable and widespread source of input data for the application of hydrological and hydraulic models: particular interest generate the attitude of the Landsat-8 OLISR data in the definition of the effective flooded area. The goal of this work is to compare performances of remote sensing and DEM-based techniques for the definition of flood-prone areas, using as reference map that obtained by a two-dimensional hydraulic simulation. An objective comparison between these two approaches has been carried out(using linear binary classifiers method and ROC curves) on the case study of Lato river basin, located in the Puglia region, Southern Italy; the satellite indices showed good performances even if the selected geomorphic descriptors still remain the most performing in reproducing the inundated areas.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Feldman, A.D.: Hydrologic modeling system HEC-HMS. Technical reference manual (2000)
Fiorentino, M., Gioia, A., Iacobellis, V., Manfreda, S.: Analysis on flood generation processes by means of a continuous simulation model. In: Advances in Geosciences, pp. 231–236. Copernicus GmbH (2006). https://doi.org/10.5194/adgeo-7-231-2006
Beven, K.J.: Rainfall-Runoff Modelling: The Primer, 2nd edn. (2012)
Manfreda, S.: Performance of a Theoretical Model for the Description of Water Balance and Runoff Dynamics in Southern Italy (2014)
Gorgoglione, A., Gioia, A., Iacobellis, V., Piccinni, A.F., Ranieri, E.: A rationale for pollutograph evaluation in ungauged areas, using daily rainfall patterns: case studies of the Apulian region in Southern Italy. Appl. Environ. Soil Sci. 2016, 1–16 (2016). https://doi.org/10.1155/2016/9327614
Gioia, A., Iacobellis, V., Manfreda, S., Fiorentino, M.: Comparison of different methods describing the peak runoff contributing areas during floods. Hydrol. Process. 31, 2041–2049 (2017). https://doi.org/10.1002/hyp.11169
Gioia, A.: Reservoir routing on double-peak design flood. Water 8, 553 (2016). https://doi.org/10.3390/w8120553
Gioia, A., Iacobellis, V., Manfreda, S., Fiorentino, M.: Influence of infiltration and soil storage capacity on the skewness of the annual maximum flood peaks in a theoretically derived distribution. Hydrol. Earth Syst. Sci. 16, 937–951 (2012). https://doi.org/10.5194/hess-16-937-2012
Iacobellis, V., Fiorentino, M., Gioia, A., Manfreda, S.: Best fit and selection of theoretical flood frequency distributions based on different runoff generation mechanisms. Water 2, 239–256 (2010). https://doi.org/10.3390/w2020239
Iacobellis, V., et al.: Investigation of a flood event occurred on Lama Balice, in the context of hazard map evaluation in karstic-ephemeral streams. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10964, pp. 317–333. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95174-4_26
De Wrachien, D., Mambretti, S.: Mathematical models for flood hazard assessment. Int. J. SAFE. 1, 353–362 (2011). https://doi.org/10.2495/SAFE-V1-N4-353-362
Iacobellis, V., Castorani, A., Di Santo, A.R., Gioia, A.: Rationale for flood prediction in karst endorheic areas. J. Arid Environ. 112, 98–108 (2015). https://doi.org/10.1016/j.jaridenv.2014.05.018
Bates, P.D., Anderson, M.G., Price, D.A., Hardy, R.J., Smith, C.N.: Analysis and development of hydraulic models for floodplain flow. In: Floodplain Processes, pp. 215–254 (1996)
Jain, S.K., Singh, R.D., Jain, M.K., Lohani, A.K.: Delineation of flood-prone areas using remote sensing techniques. Water Resour. Manage 19, 333–347 (2005). https://doi.org/10.1007/s11269-005-3281-5
Fluet-Chouinard, E., Lehner, B., Rebelo, L.-M., Papa, F., Hamilton, S.K.: Development of a global inundation map at high spatial resolution from topographic downscaling of coarse-scale remote sensing data. Remote Sens. Environ. 158, 348–361 (2015). https://doi.org/10.1016/j.rse.2014.10.015
Manfreda, S., et al.: Flood-prone areas assessment using linear binary classifiers based on flood maps obtained from 1D and 2D hydraulic models. Nat. Hazards J. Int. Soc. Prev. Mitig. Nat. Hazards 79, 735–754 (2015)
Nardi, F., Vivoni, E., Grimaldi, S.: Investigating a floodplain scaling relation using a hydrogeomorphic delineation method. Water Resour. Res. 42 (2006). https://doi.org/10.1029/2005WR004155
Marks, K., Bates, P.: Integration of high-resolution topographic data with floodplain flow models. Hydrol. Process. 14, 2109–2122 (2000)
Degiorgis, M., Gnecco, G., Gorni, S., Roth, G., Sanguineti, M., Taramasso, A.C.: Classifiers for the detection of flood-prone areas using remote sensed elevation data. J. Hydrol. 470–471, 302–315 (2012). https://doi.org/10.1016/j.jhydrol.2012.09.006
De Risi, R., Jalayer, F., De Paola, F., Giugni, M.: Probabilistic delineation of flood-prone areas based on a digital elevation model and the extent of historical flooding: the case of Ouagadougou. Bol. Geol. Min. 125, 329–340 (2014)
Totaro, V., Gioia, A., Novelli, A., Caradonna, G.: The use of geomorphological descriptors and landsat-8 spectral indices data for flood areas evaluation: a case study of Lato river basin. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10407, pp. 30–44. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62401-3_3
Mattia, F., et al.: Time series of COSMO-SkyMed data for landcover classification and surface parameter retrieval over agricultural sites. In: 2012 IEEE International Geoscience and Remote Sensing Symposium, pp. 6511–6514 (2012). https://doi.org/10.1109/IGARSS.2012.6352738
Balenzano, A., et al.: On the use of multi-temporal series of COSMO-SkyMed data for LANDcover classification and surface parameter retrieval over agricultural sites. In: 2011 IEEE International Geoscience and Remote Sensing Symposium, pp. 142–145 (2011). https://doi.org/10.1109/IGARSS.2011.6048918
Balenzano, A., et al.: A ground network for SAR-derived soil moisture product calibration, validation and exploitation in Southern Italy. In: 2014 IEEE Geoscience and Remote Sensing Symposium, pp. 3382–3385 (2014). https://doi.org/10.1109/IGARSS.2014.6947206
Olang, L.O., Kundu, P., Bauer, T., Fürst, J.: Analysis of spatio-temporal land cover changes for hydrological impact assessment within the Nyando River Basin of Kenya. Environ. Monit. Assess. 179, 389–401 (2011). https://doi.org/10.1007/s10661-010-1743-6
Balacco, G., Figorito, B., Tarantino, E., Gioia, A., Iacobellis, V.: Space–time LAI variability in Northern Puglia (Italy) from SPOT VGT data. Environ. Monit. Assess. 187, 434 (2015). https://doi.org/10.1007/s10661-015-4603-6
Crocetto, N., Tarantino, E.: A class-oriented Strategy for features extraction from multidate ASTER imagery. Remote Sens. 1, 1171–1189 (2009). https://doi.org/10.3390/rs1041171
Saradjian, M.R., Hosseini, M.: Soil moisture estimation by using multipolarization SAR image. Adv. Space Res. 48, 278–286 (2011). https://doi.org/10.1016/j.asr.2011.03.029
Iacobellis, V., Gioia, A., Milella, P., Satalino, G., Balenzano, A., Mattia, F.: Inter-comparison of hydrological model simulations with time series of SAR-derived soil moisture maps. Euro. J. Remote Sens. 46, 739–757 (2013). https://doi.org/10.5721/EuJRS20134644
Tarantino, E.: Monitoring spatial and temporal distribution of sea surface temperature with TIR sensor data. Ital. J. Remote Sens. 44(1), 97–107 (2012)
Aquilino, M., Novelli, A., Tarantino, E., Iacobellis, V., Gentile, F.: Evaluating the potential of GeoEye data in retrieving LAI at watershed scale. In: Presented at the Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 1 October 2014 (2014). https://doi.org/10.1117/12.2067185
Peschechera, G., Novelli, A., Caradonna, G., Fratino, U.: Calibration of the CLAIR model by using landsat 8 surface reflectance higher-level data and MODIS leaf area index products. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10407, pp. 16–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62401-3_2
Peschechera, G., Fratino, U.: Calibration of CLAIR model by means of Sentinel-2 LAI data for analysing wheat crops through landsat-8 surface reflectance data. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10964, pp. 294–304. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95174-4_24
Gioia, A., Totaro, V., Bonelli, R., Esposito, A.A.M.G., Balacco, G., Iacobellis, V.: Flood susceptibility evaluation on ephemeral streams of Southern Italy: a case study of Lama Balice. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10964, pp. 334–348. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95174-4_27
Fiorentino, M., Gioia, A., Iacobellis, V., Manfreda, S.: Regional analysis of runoff thresholds behaviour in Southern Italy based on theoretically derived distributions. In: Advances in Geosciences, pp. 139–144. Copernicus GmbH (2011). https://doi.org/10.5194/adgeo-26-139-2011
Valentino, S., Costa, P.J., Humberto, V., Giuseppina, U., Fabio, F.: Structural degradation assessment of RC buildings: calibration and comparison of semeiotic-based methodology for decision support system. J. Perform. Constructed Facil. 33, 04018109 (2019). https://doi.org/10.1061/(ASCE)CF.1943-5509.0001249
Valentino, S., Giuseppina, U., Fabio, F.: User reporting-based semeiotic assessment of existing building stock at the regional scale. J. Perform. Constructed Facil. 32, 04018079 (2018). https://doi.org/10.1061/(ASCE)CF.1943-5509.0001227
O’Brien, J.S., Julien, P.Y., Fullerton, W.T.: Two-dimensional water flood and mudflow simulation. J. Hydraul. Eng. 119, 244–261 (1993). https://doi.org/10.1061/(ASCE)0733-9429(1993)119:2(244)
Service, U.S.S.C.: SCS National Engineering Handbook, Section 4: Hydrology (1972)
Chen, D., Huang, J., Jackson, T.J.: Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near- and short-wave infrared bands. Remote Sens. Environ. 98, 225–236 (2005). https://doi.org/10.1016/j.rse.2005.07.008
Vermote, E., Justice, C., Claverie, M., Franch, B.: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 185, 46–56 (2016). https://doi.org/10.1016/j.rse.2016.04.008
Malinowski, R., Groom, G., Schwanghart, W., Heckrath, G.: Detection and delineation of localized flooding from WorldView-2 multispectral data. Remote Sens. 7, 14853–14875 (2015). https://doi.org/10.3390/rs71114853
Birth, G.S., McVey, G.R.: Measuring the color of growing turf with a reflectance spectrophotometer 1. Agron. J. 60, 640–643 (1968). https://doi.org/10.2134/agronj1968.00021962006000060016x
Rouse, J.W.: Monitoring vegetation systems in the Great Plains with ERTS. Presented at the 1 January (1974)
Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G.: Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002). https://doi.org/10.1016/S0034-4257(02)00096-2
McFeeters, S.K.: The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 17, 1425–1432 (1996). https://doi.org/10.1080/01431169608948714
Xu, H.: Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 27, 3025–3033 (2006). https://doi.org/10.1080/01431160600589179
Gao, B.: NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 58, 257–266 (1996). https://doi.org/10.1016/S0034-4257(96)00067-3
Wilson, E.H., Sader, S.A.: Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sens. Environ. 80, 385–396 (2002). https://doi.org/10.1016/S0034-4257(01)00318-2
Feyisa, G.L., Meilby, H., Fensholt, R., Proud, S.R.: Automated water extraction index: a new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 140, 23–35 (2014). https://doi.org/10.1016/j.rse.2013.08.029
Rouse Jr., J.W., Haas, R.H., Schell, J.A., Deering, D.W.: Monitoring Vegetation Systems in the Great Plains with Erts, vol. 351, pp. 309. NASA Special Publication (1974)
Balacco, G., Totaro, V., Gioia, A., Piccinni, A.F.: Evaluation of geomorphic descriptors thresholds for flood prone areas detection on ephemeral streams in the metropolitan area of Bari (Italy). In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11622, pp. 239–254. Springer, Cham (2019)
Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27, 861–874 (2006). https://doi.org/10.1016/j.patrec.2005.10.010
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Totaro, V., Peschechera, G., Gioia, A., Iacobellis, V., Fratino, U. (2019). Comparison of Satellite and Geomorphic Indices for Flooded Areas Detection in a Mediterranean River Basin. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11622. Springer, Cham. https://doi.org/10.1007/978-3-030-24305-0_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-24305-0_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-24304-3
Online ISBN: 978-3-030-24305-0
eBook Packages: Computer ScienceComputer Science (R0)