Comparison of Satellite and Geomorphic Indices for Flooded Areas Detection in a Mediterranean River Basin | SpringerLink
Skip to main content

Comparison of Satellite and Geomorphic Indices for Flooded Areas Detection in a Mediterranean River Basin

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2019 (ICCSA 2019)

Abstract

Flood-hazard map delineation is an important task in planning land management activities. This evaluation is usually based on coupled hydraulic/hydrological models, which often require time consuming and expensive measurement campaigns in order to estimate the necessary distributed physical information for their implementation (e.g. digital elevation models, land cover and geological maps); moreover, the observed effects of flood events are needed for their calibration and validation. The obtained flooded maps can allow to perform geomorphic DEM-based procedure, which is a valid tool useful for the rapid identification and mapping of flood-prone areas; in addition remote sensing is a reliable and widespread source of input data for the application of hydrological and hydraulic models: particular interest generate the attitude of the Landsat-8 OLISR data in the definition of the effective flooded area. The goal of this work is to compare performances of remote sensing and DEM-based techniques for the definition of flood-prone areas, using as reference map that obtained by a two-dimensional hydraulic simulation. An objective comparison between these two approaches has been carried out(using linear binary classifiers method and ROC curves) on the case study of Lato river basin, located in the Puglia region, Southern Italy; the satellite indices showed good performances even if the selected geomorphic descriptors still remain the most performing in reproducing the inundated areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Feldman, A.D.: Hydrologic modeling system HEC-HMS. Technical reference manual (2000)

    Google Scholar 

  2. Fiorentino, M., Gioia, A., Iacobellis, V., Manfreda, S.: Analysis on flood generation processes by means of a continuous simulation model. In: Advances in Geosciences, pp. 231–236. Copernicus GmbH (2006). https://doi.org/10.5194/adgeo-7-231-2006

    Article  Google Scholar 

  3. Beven, K.J.: Rainfall-Runoff Modelling: The Primer, 2nd edn. (2012)

    Book  Google Scholar 

  4. Manfreda, S.: Performance of a Theoretical Model for the Description of Water Balance and Runoff Dynamics in Southern Italy (2014)

    Google Scholar 

  5. Gorgoglione, A., Gioia, A., Iacobellis, V., Piccinni, A.F., Ranieri, E.: A rationale for pollutograph evaluation in ungauged areas, using daily rainfall patterns: case studies of the Apulian region in Southern Italy. Appl. Environ. Soil Sci. 2016, 1–16 (2016). https://doi.org/10.1155/2016/9327614

    Article  Google Scholar 

  6. Gioia, A., Iacobellis, V., Manfreda, S., Fiorentino, M.: Comparison of different methods describing the peak runoff contributing areas during floods. Hydrol. Process. 31, 2041–2049 (2017). https://doi.org/10.1002/hyp.11169

    Article  Google Scholar 

  7. Gioia, A.: Reservoir routing on double-peak design flood. Water 8, 553 (2016). https://doi.org/10.3390/w8120553

    Article  Google Scholar 

  8. Gioia, A., Iacobellis, V., Manfreda, S., Fiorentino, M.: Influence of infiltration and soil storage capacity on the skewness of the annual maximum flood peaks in a theoretically derived distribution. Hydrol. Earth Syst. Sci. 16, 937–951 (2012). https://doi.org/10.5194/hess-16-937-2012

    Article  Google Scholar 

  9. Iacobellis, V., Fiorentino, M., Gioia, A., Manfreda, S.: Best fit and selection of theoretical flood frequency distributions based on different runoff generation mechanisms. Water 2, 239–256 (2010). https://doi.org/10.3390/w2020239

    Article  Google Scholar 

  10. Iacobellis, V., et al.: Investigation of a flood event occurred on Lama Balice, in the context of hazard map evaluation in karstic-ephemeral streams. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10964, pp. 317–333. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95174-4_26

    Chapter  Google Scholar 

  11. De Wrachien, D., Mambretti, S.: Mathematical models for flood hazard assessment. Int. J. SAFE. 1, 353–362 (2011). https://doi.org/10.2495/SAFE-V1-N4-353-362

    Article  Google Scholar 

  12. Iacobellis, V., Castorani, A., Di Santo, A.R., Gioia, A.: Rationale for flood prediction in karst endorheic areas. J. Arid Environ. 112, 98–108 (2015). https://doi.org/10.1016/j.jaridenv.2014.05.018

    Article  Google Scholar 

  13. Bates, P.D., Anderson, M.G., Price, D.A., Hardy, R.J., Smith, C.N.: Analysis and development of hydraulic models for floodplain flow. In: Floodplain Processes, pp. 215–254 (1996)

    Google Scholar 

  14. Jain, S.K., Singh, R.D., Jain, M.K., Lohani, A.K.: Delineation of flood-prone areas using remote sensing techniques. Water Resour. Manage 19, 333–347 (2005). https://doi.org/10.1007/s11269-005-3281-5

    Article  Google Scholar 

  15. Fluet-Chouinard, E., Lehner, B., Rebelo, L.-M., Papa, F., Hamilton, S.K.: Development of a global inundation map at high spatial resolution from topographic downscaling of coarse-scale remote sensing data. Remote Sens. Environ. 158, 348–361 (2015). https://doi.org/10.1016/j.rse.2014.10.015

    Article  Google Scholar 

  16. Manfreda, S., et al.: Flood-prone areas assessment using linear binary classifiers based on flood maps obtained from 1D and 2D hydraulic models. Nat. Hazards J. Int. Soc. Prev. Mitig. Nat. Hazards 79, 735–754 (2015)

    Google Scholar 

  17. Nardi, F., Vivoni, E., Grimaldi, S.: Investigating a floodplain scaling relation using a hydrogeomorphic delineation method. Water Resour. Res. 42 (2006). https://doi.org/10.1029/2005WR004155

  18. Marks, K., Bates, P.: Integration of high-resolution topographic data with floodplain flow models. Hydrol. Process. 14, 2109–2122 (2000)

    Article  Google Scholar 

  19. Degiorgis, M., Gnecco, G., Gorni, S., Roth, G., Sanguineti, M., Taramasso, A.C.: Classifiers for the detection of flood-prone areas using remote sensed elevation data. J. Hydrol. 470–471, 302–315 (2012). https://doi.org/10.1016/j.jhydrol.2012.09.006

    Article  Google Scholar 

  20. De Risi, R., Jalayer, F., De Paola, F., Giugni, M.: Probabilistic delineation of flood-prone areas based on a digital elevation model and the extent of historical flooding: the case of Ouagadougou. Bol. Geol. Min. 125, 329–340 (2014)

    Google Scholar 

  21. Totaro, V., Gioia, A., Novelli, A., Caradonna, G.: The use of geomorphological descriptors and landsat-8 spectral indices data for flood areas evaluation: a case study of Lato river basin. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10407, pp. 30–44. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62401-3_3

    Chapter  Google Scholar 

  22. Mattia, F., et al.: Time series of COSMO-SkyMed data for landcover classification and surface parameter retrieval over agricultural sites. In: 2012 IEEE International Geoscience and Remote Sensing Symposium, pp. 6511–6514 (2012). https://doi.org/10.1109/IGARSS.2012.6352738

  23. Balenzano, A., et al.: On the use of multi-temporal series of COSMO-SkyMed data for LANDcover classification and surface parameter retrieval over agricultural sites. In: 2011 IEEE International Geoscience and Remote Sensing Symposium, pp. 142–145 (2011). https://doi.org/10.1109/IGARSS.2011.6048918

  24. Balenzano, A., et al.: A ground network for SAR-derived soil moisture product calibration, validation and exploitation in Southern Italy. In: 2014 IEEE Geoscience and Remote Sensing Symposium, pp. 3382–3385 (2014). https://doi.org/10.1109/IGARSS.2014.6947206

  25. Olang, L.O., Kundu, P., Bauer, T., Fürst, J.: Analysis of spatio-temporal land cover changes for hydrological impact assessment within the Nyando River Basin of Kenya. Environ. Monit. Assess. 179, 389–401 (2011). https://doi.org/10.1007/s10661-010-1743-6

    Article  Google Scholar 

  26. Balacco, G., Figorito, B., Tarantino, E., Gioia, A., Iacobellis, V.: Space–time LAI variability in Northern Puglia (Italy) from SPOT VGT data. Environ. Monit. Assess. 187, 434 (2015). https://doi.org/10.1007/s10661-015-4603-6

    Article  Google Scholar 

  27. Crocetto, N., Tarantino, E.: A class-oriented Strategy for features extraction from multidate ASTER imagery. Remote Sens. 1, 1171–1189 (2009). https://doi.org/10.3390/rs1041171

    Article  Google Scholar 

  28. Saradjian, M.R., Hosseini, M.: Soil moisture estimation by using multipolarization SAR image. Adv. Space Res. 48, 278–286 (2011). https://doi.org/10.1016/j.asr.2011.03.029

    Article  Google Scholar 

  29. Iacobellis, V., Gioia, A., Milella, P., Satalino, G., Balenzano, A., Mattia, F.: Inter-comparison of hydrological model simulations with time series of SAR-derived soil moisture maps. Euro. J. Remote Sens. 46, 739–757 (2013). https://doi.org/10.5721/EuJRS20134644

    Article  Google Scholar 

  30. Tarantino, E.: Monitoring spatial and temporal distribution of sea surface temperature with TIR sensor data. Ital. J. Remote Sens. 44(1), 97–107 (2012)

    Google Scholar 

  31. Aquilino, M., Novelli, A., Tarantino, E., Iacobellis, V., Gentile, F.: Evaluating the potential of GeoEye data in retrieving LAI at watershed scale. In: Presented at the Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 1 October 2014 (2014). https://doi.org/10.1117/12.2067185

  32. Peschechera, G., Novelli, A., Caradonna, G., Fratino, U.: Calibration of the CLAIR model by using landsat 8 surface reflectance higher-level data and MODIS leaf area index products. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10407, pp. 16–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62401-3_2

    Chapter  Google Scholar 

  33. Peschechera, G., Fratino, U.: Calibration of CLAIR model by means of Sentinel-2 LAI data for analysing wheat crops through landsat-8 surface reflectance data. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10964, pp. 294–304. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95174-4_24

    Chapter  Google Scholar 

  34. Gioia, A., Totaro, V., Bonelli, R., Esposito, A.A.M.G., Balacco, G., Iacobellis, V.: Flood susceptibility evaluation on ephemeral streams of Southern Italy: a case study of Lama Balice. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10964, pp. 334–348. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95174-4_27

    Chapter  Google Scholar 

  35. Fiorentino, M., Gioia, A., Iacobellis, V., Manfreda, S.: Regional analysis of runoff thresholds behaviour in Southern Italy based on theoretically derived distributions. In: Advances in Geosciences, pp. 139–144. Copernicus GmbH (2011). https://doi.org/10.5194/adgeo-26-139-2011

    Article  Google Scholar 

  36. Valentino, S., Costa, P.J., Humberto, V., Giuseppina, U., Fabio, F.: Structural degradation assessment of RC buildings: calibration and comparison of semeiotic-based methodology for decision support system. J. Perform. Constructed Facil. 33, 04018109 (2019). https://doi.org/10.1061/(ASCE)CF.1943-5509.0001249

    Article  Google Scholar 

  37. Valentino, S., Giuseppina, U., Fabio, F.: User reporting-based semeiotic assessment of existing building stock at the regional scale. J. Perform. Constructed Facil. 32, 04018079 (2018). https://doi.org/10.1061/(ASCE)CF.1943-5509.0001227

    Article  Google Scholar 

  38. O’Brien, J.S., Julien, P.Y., Fullerton, W.T.: Two-dimensional water flood and mudflow simulation. J. Hydraul. Eng. 119, 244–261 (1993). https://doi.org/10.1061/(ASCE)0733-9429(1993)119:2(244)

    Article  Google Scholar 

  39. Service, U.S.S.C.: SCS National Engineering Handbook, Section 4: Hydrology (1972)

    Google Scholar 

  40. Chen, D., Huang, J., Jackson, T.J.: Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near- and short-wave infrared bands. Remote Sens. Environ. 98, 225–236 (2005). https://doi.org/10.1016/j.rse.2005.07.008

    Article  Google Scholar 

  41. Vermote, E., Justice, C., Claverie, M., Franch, B.: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 185, 46–56 (2016). https://doi.org/10.1016/j.rse.2016.04.008

    Article  Google Scholar 

  42. Malinowski, R., Groom, G., Schwanghart, W., Heckrath, G.: Detection and delineation of localized flooding from WorldView-2 multispectral data. Remote Sens. 7, 14853–14875 (2015). https://doi.org/10.3390/rs71114853

    Article  Google Scholar 

  43. Birth, G.S., McVey, G.R.: Measuring the color of growing turf with a reflectance spectrophotometer 1. Agron. J. 60, 640–643 (1968). https://doi.org/10.2134/agronj1968.00021962006000060016x

    Article  Google Scholar 

  44. Rouse, J.W.: Monitoring vegetation systems in the Great Plains with ERTS. Presented at the 1 January (1974)

    Google Scholar 

  45. Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G.: Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002). https://doi.org/10.1016/S0034-4257(02)00096-2

    Article  Google Scholar 

  46. McFeeters, S.K.: The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 17, 1425–1432 (1996). https://doi.org/10.1080/01431169608948714

    Article  Google Scholar 

  47. Xu, H.: Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 27, 3025–3033 (2006). https://doi.org/10.1080/01431160600589179

    Article  Google Scholar 

  48. Gao, B.: NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 58, 257–266 (1996). https://doi.org/10.1016/S0034-4257(96)00067-3

    Article  Google Scholar 

  49. Wilson, E.H., Sader, S.A.: Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sens. Environ. 80, 385–396 (2002). https://doi.org/10.1016/S0034-4257(01)00318-2

    Article  Google Scholar 

  50. Feyisa, G.L., Meilby, H., Fensholt, R., Proud, S.R.: Automated water extraction index: a new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 140, 23–35 (2014). https://doi.org/10.1016/j.rse.2013.08.029

    Article  Google Scholar 

  51. Rouse Jr., J.W., Haas, R.H., Schell, J.A., Deering, D.W.: Monitoring Vegetation Systems in the Great Plains with Erts, vol. 351, pp. 309. NASA Special Publication (1974)

    Google Scholar 

  52. Balacco, G., Totaro, V., Gioia, A., Piccinni, A.F.: Evaluation of geomorphic descriptors thresholds for flood prone areas detection on ephemeral streams in the metropolitan area of Bari (Italy). In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11622, pp. 239–254. Springer, Cham (2019)

    Google Scholar 

  53. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27, 861–874 (2006). https://doi.org/10.1016/j.patrec.2005.10.010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Totaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Totaro, V., Peschechera, G., Gioia, A., Iacobellis, V., Fratino, U. (2019). Comparison of Satellite and Geomorphic Indices for Flooded Areas Detection in a Mediterranean River Basin. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11622. Springer, Cham. https://doi.org/10.1007/978-3-030-24305-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24305-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24304-3

  • Online ISBN: 978-3-030-24305-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics