A Global Classifier Implementation for Detecting Anomalies by Using One-Class Techniques over a Laboratory Plant | SpringerLink
Skip to main content

A Global Classifier Implementation for Detecting Anomalies by Using One-Class Techniques over a Laboratory Plant

  • Conference paper
Distributed Computing and Artificial Intelligence, 16th International Conference, Special Sessions (DCAI 2019)

Abstract

The energy and the product optimization of the industrial processes has played a key role during last decades. In this field, the appearance of any kind of anomaly may represent an important issue. Then, anomaly detection in an industrial plant is specially relevant.

In this work, the anomaly detection over level plant control is achieved, by using three one class intelligent techniques. Different global classifiers are trained and tested with real data from a laboratory plant, whose main aim is to control the tank liquid level. The results of each classifier are assessed and validated with real anomalies, leading to good results, in general terms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baruque, B., Porras, S., Jove, E., Calvo-Rolle, J.L.: Geothermal heat exchanger energy prediction based on time series and monitoring sensors optimization. Energy 171, 49–60 (2019)

    Article  Google Scholar 

  2. Bradley, A.P.: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 30(7), 1145–1159 (1997)

    Article  Google Scholar 

  3. Calvo-Rolle, J.L., Quintian-Pardo, H., Corchado, E., del Carmen Meizoso-López, M., García, R.F.: Simplified method based on an intelligent model to obtain the extinction angle of the current for a single-phase half wave controlled rectifier with resistive and inductive load. J. Appl. Logic 13(1), 37–47 (2015)

    Article  Google Scholar 

  4. Casale, P., Pujol, O., Radeva, P.: Approximate convex hulls family for one-class classification. In: International Workshop on Multiple Classifier Systems, pp. 106–115. Springer (2011)

    Google Scholar 

  5. Casale, P., Pujol, O., Radeva, P.: Approximate convex hulls family for one-class classification. In: Sansone, C., Kittler, J., Roli, F. (eds.) Multiple Classifier Systems, pp. 106–115. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Casteleiro-Roca, J.L., Jove, E., Gonzalez-Cava, J.M., Méndez Pérez, J.A., Calvo-Rolle, J.L., Blanco Alvarez, F.: Hybrid model for the ani index prediction using remifentanil drug and emg signal. Neural Comput. Appl. (2018). https://doi.org/10.1007/s00521-018-3605-z

  7. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)

    Article  Google Scholar 

  8. Chen, Y., Zhou, X.S., Huang, T.S.: One-class SVM for learning in image retrieval. In: Proceedings of the 2001 International Conference on Image Processing, vol. 1, pp. 34–37. IEEE (2001)

    Google Scholar 

  9. Chiang, L.H., Russell, E.L., Braatz, R.D.: Fault Detection and Diagnosis in Industrial Systems. Springer, London (2000)

    Google Scholar 

  10. Fernández-Francos, D., Fontenla-Romero, Ó., Alonso-Betanzos, A.: One-class convex hull-based algorithm for classification in distributed environments. IEEE Trans. Syst. Man Cybernet. Syst. 1–11 (2018)

    Google Scholar 

  11. González, G., Angelo, C.D., Forchetti, D., Aligia, D.: Diagnóstico de fallas en el convertidor del rotor en generadores de inducción con rotor bobinado. Revista Iberoamericana de Automática e Informática industrial 15(3), 297–308 (2018). https://polipapers.upv.es/index.php/RIAI/article/view/9042

    Article  Google Scholar 

  12. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press, Cambridge (2016)

    Google Scholar 

  13. Hobday, M.: Product complexity, innovation and industrial organisation. Res. Policy 26(6), 689–710 (1998)

    Article  Google Scholar 

  14. Hodge, V., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2), 85–126 (2004)

    Article  Google Scholar 

  15. Jove, E., Aláiz-Moretón, H., Casteleiro-Roca, J.L., Corchado, E., Calvo-Rolle, J.L.: Modeling of bicomponent mixing system used in the manufacture of wind generator blades. In: Corchado, E., Lozano, J.A., Quintián, H., Yin, H. (eds.) Intelligent Data Engineering and Automated Learning - IDEAL 2014, pp. 275–285. Springer International Publishing, Cham (2014)

    Chapter  Google Scholar 

  16. Jove, E., Antonio Lopez-Vazquez, J., Isabel Fernandez-Ibanez, M., Casteleiro-Roca, J.L., Luis Calvo-Rolle, J.: Hybrid intelligent system to predict the individual academic performance of engineering students. Int. J. Eng. Educ. 34(3), 895–904 (2018)

    Google Scholar 

  17. Jove, E., Gonzalez-Cava, J.M., Casteleiro-Roca, J.L., Méndez-Pérez, J.A., Antonio Reboso-Morales, J., Javier Pérez-Castelo, F., Javier de Cos Juez, F., Luis Calvo-Rolle, J.: Modelling the hypnotic patient response in general anaesthesia using intelligent models. Logic J. IGPL (2018)

    Google Scholar 

  18. Moreno-Fernandez-de Leceta, A., Lopez-Guede, J.M., Ezquerro Insagurbe, L., Ruiz de Arbulo, N., Granã, M.: A novel methodology for clinical semantic annotations assessment. Logic J. IGPL 26(6), 569–580 (2018). http://dx.doi.org/10.1093/jigpal/jzy021

  19. Li, K.L., Huang, H.K., Tian, S.F., Xu, W.: Improving one-class SVM for anomaly detection. In: 2003 International Conference on Machine Learning and Cybernetics, vol. 5, pp. 3077–3081. IEEE (2003)

    Google Scholar 

  20. Manuel Vilar-Martinez, X., Aurelio Montero-Sousa, J., Luis Calvo-Rolle, J., Luis Casteleiro-Roca, J.: Expert system development to assist on the verification of “tacan” system performance. Dyna 89(1), 112–121 (2014)

    Google Scholar 

  21. MathWorks: Autoencoder, 29 January 2019. https://es.mathworks.com/help/deeplearning/ref/trainautoencoder.html

  22. MathWorks: fitcsvm, 29 January 2019. https://es.mathworks.com/help/stats/fitcsvm.html

  23. MathWorks: predict, 29 January 2019. https://es.mathworks.com/help/stats/classreg.learning.classif.compactclassificationsvm.predict.html

  24. Miljković, D.: Fault detection methods: a literature survey. In: MIPRO, 2011 Proceedings of the 34th International Convention, pp. 750–755. IEEE (2011)

    Google Scholar 

  25. de la Portilla, M.P., Eiro, A.L.P., Sánchez, J.A.S., Herrera, R.M.: Modelado dinámico y control de un dispositivo sumergido provisto de actuadores hidrostáticos. Revista Iberoamericana de Automática e Informática industrial 15(1), 12–23 (2017). https://polipapers.upv.es/index.php/RIAI/article/view/8824

  26. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, New York (2012)

    Google Scholar 

  27. Quintián, H., Corchado, E.: Beta scale invariant map. Eng. Appl. Artif. Intell. 59, 218–235 (2017)

    Article  Google Scholar 

  28. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014). https://link.aps.org/doi/10.1103/PhysRevLett.113.130503

  29. Sakurada, M., Yairi, T.: Anomaly detection using autoencoders with nonlinear dimensionality reduction. In: Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis, p. 4. ACM (2014)

    Google Scholar 

  30. Segovia, F., Górriz, J.M., Ramírez, J., Martinez-Murcia, F.J., García-Pérez, M.: Using deep neural networks along with dimensionality reduction techniques to assist the diagnosis of neurodegenerative disorders. Logic J. IGPL 26(6), 618–628 (2018). http://dx.doi.org/10.1093/jigpal/jzy026

  31. Shalabi, L.A., Shaaban, Z.: Normalization as a preprocessing engine for data mining and the approach of preference matrix. In: 2006 International Conference on Dependability of Computer Systems, pp. 207–214, May 2006

    Google Scholar 

  32. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(Dec), 3371–3408 (2010)

    MathSciNet  Google Scholar 

  33. Wojciechowski, S.: A comparison of classification strategies in rule-based classifiers. Logic J. IGPL 26(1), 29–46 (2018). http://dx.doi.org/10.1093/jigpal/jzx053

    Article  MathSciNet  Google Scholar 

  34. Zeng, Z., Wang, J.: Advances in Neural Network Research and Applications, 1st edn. Springer, Heidelberg (2010)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban Jove .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Cite this paper

Jove, E., Casteleiro-Roca, JL., Quintián, H., Méndez-Pérez, JA., Calvo-Rolle, J.L. (2020). A Global Classifier Implementation for Detecting Anomalies by Using One-Class Techniques over a Laboratory Plant. In: Herrera-Viedma, E., Vale, Z., Nielsen, P., Martin Del Rey, A., Casado Vara, R. (eds) Distributed Computing and Artificial Intelligence, 16th International Conference, Special Sessions. DCAI 2019. Advances in Intelligent Systems and Computing, vol 1004. Springer, Cham. https://doi.org/10.1007/978-3-030-23946-6_17

Download citation

Publish with us

Policies and ethics