Abstract
The energy and the product optimization of the industrial processes has played a key role during last decades. In this field, the appearance of any kind of anomaly may represent an important issue. Then, anomaly detection in an industrial plant is specially relevant.
In this work, the anomaly detection over level plant control is achieved, by using three one class intelligent techniques. Different global classifiers are trained and tested with real data from a laboratory plant, whose main aim is to control the tank liquid level. The results of each classifier are assessed and validated with real anomalies, leading to good results, in general terms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baruque, B., Porras, S., Jove, E., Calvo-Rolle, J.L.: Geothermal heat exchanger energy prediction based on time series and monitoring sensors optimization. Energy 171, 49–60 (2019)
Bradley, A.P.: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 30(7), 1145–1159 (1997)
Calvo-Rolle, J.L., Quintian-Pardo, H., Corchado, E., del Carmen Meizoso-López, M., García, R.F.: Simplified method based on an intelligent model to obtain the extinction angle of the current for a single-phase half wave controlled rectifier with resistive and inductive load. J. Appl. Logic 13(1), 37–47 (2015)
Casale, P., Pujol, O., Radeva, P.: Approximate convex hulls family for one-class classification. In: International Workshop on Multiple Classifier Systems, pp. 106–115. Springer (2011)
Casale, P., Pujol, O., Radeva, P.: Approximate convex hulls family for one-class classification. In: Sansone, C., Kittler, J., Roli, F. (eds.) Multiple Classifier Systems, pp. 106–115. Springer, Heidelberg (2011)
Casteleiro-Roca, J.L., Jove, E., Gonzalez-Cava, J.M., Méndez Pérez, J.A., Calvo-Rolle, J.L., Blanco Alvarez, F.: Hybrid model for the ani index prediction using remifentanil drug and emg signal. Neural Comput. Appl. (2018). https://doi.org/10.1007/s00521-018-3605-z
Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)
Chen, Y., Zhou, X.S., Huang, T.S.: One-class SVM for learning in image retrieval. In: Proceedings of the 2001 International Conference on Image Processing, vol. 1, pp. 34–37. IEEE (2001)
Chiang, L.H., Russell, E.L., Braatz, R.D.: Fault Detection and Diagnosis in Industrial Systems. Springer, London (2000)
Fernández-Francos, D., Fontenla-Romero, Ó., Alonso-Betanzos, A.: One-class convex hull-based algorithm for classification in distributed environments. IEEE Trans. Syst. Man Cybernet. Syst. 1–11 (2018)
González, G., Angelo, C.D., Forchetti, D., Aligia, D.: Diagnóstico de fallas en el convertidor del rotor en generadores de inducción con rotor bobinado. Revista Iberoamericana de Automática e Informática industrial 15(3), 297–308 (2018). https://polipapers.upv.es/index.php/RIAI/article/view/9042
Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press, Cambridge (2016)
Hobday, M.: Product complexity, innovation and industrial organisation. Res. Policy 26(6), 689–710 (1998)
Hodge, V., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2), 85–126 (2004)
Jove, E., Aláiz-Moretón, H., Casteleiro-Roca, J.L., Corchado, E., Calvo-Rolle, J.L.: Modeling of bicomponent mixing system used in the manufacture of wind generator blades. In: Corchado, E., Lozano, J.A., Quintián, H., Yin, H. (eds.) Intelligent Data Engineering and Automated Learning - IDEAL 2014, pp. 275–285. Springer International Publishing, Cham (2014)
Jove, E., Antonio Lopez-Vazquez, J., Isabel Fernandez-Ibanez, M., Casteleiro-Roca, J.L., Luis Calvo-Rolle, J.: Hybrid intelligent system to predict the individual academic performance of engineering students. Int. J. Eng. Educ. 34(3), 895–904 (2018)
Jove, E., Gonzalez-Cava, J.M., Casteleiro-Roca, J.L., Méndez-Pérez, J.A., Antonio Reboso-Morales, J., Javier Pérez-Castelo, F., Javier de Cos Juez, F., Luis Calvo-Rolle, J.: Modelling the hypnotic patient response in general anaesthesia using intelligent models. Logic J. IGPL (2018)
Moreno-Fernandez-de Leceta, A., Lopez-Guede, J.M., Ezquerro Insagurbe, L., Ruiz de Arbulo, N., Granã, M.: A novel methodology for clinical semantic annotations assessment. Logic J. IGPL 26(6), 569–580 (2018). http://dx.doi.org/10.1093/jigpal/jzy021
Li, K.L., Huang, H.K., Tian, S.F., Xu, W.: Improving one-class SVM for anomaly detection. In: 2003 International Conference on Machine Learning and Cybernetics, vol. 5, pp. 3077–3081. IEEE (2003)
Manuel Vilar-Martinez, X., Aurelio Montero-Sousa, J., Luis Calvo-Rolle, J., Luis Casteleiro-Roca, J.: Expert system development to assist on the verification of “tacan” system performance. Dyna 89(1), 112–121 (2014)
MathWorks: Autoencoder, 29 January 2019. https://es.mathworks.com/help/deeplearning/ref/trainautoencoder.html
MathWorks: fitcsvm, 29 January 2019. https://es.mathworks.com/help/stats/fitcsvm.html
MathWorks: predict, 29 January 2019. https://es.mathworks.com/help/stats/classreg.learning.classif.compactclassificationsvm.predict.html
Miljković, D.: Fault detection methods: a literature survey. In: MIPRO, 2011 Proceedings of the 34th International Convention, pp. 750–755. IEEE (2011)
de la Portilla, M.P., Eiro, A.L.P., Sánchez, J.A.S., Herrera, R.M.: Modelado dinámico y control de un dispositivo sumergido provisto de actuadores hidrostáticos. Revista Iberoamericana de Automática e Informática industrial 15(1), 12–23 (2017). https://polipapers.upv.es/index.php/RIAI/article/view/8824
Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, New York (2012)
Quintián, H., Corchado, E.: Beta scale invariant map. Eng. Appl. Artif. Intell. 59, 218–235 (2017)
Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014). https://link.aps.org/doi/10.1103/PhysRevLett.113.130503
Sakurada, M., Yairi, T.: Anomaly detection using autoencoders with nonlinear dimensionality reduction. In: Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis, p. 4. ACM (2014)
Segovia, F., Górriz, J.M., Ramírez, J., Martinez-Murcia, F.J., García-Pérez, M.: Using deep neural networks along with dimensionality reduction techniques to assist the diagnosis of neurodegenerative disorders. Logic J. IGPL 26(6), 618–628 (2018). http://dx.doi.org/10.1093/jigpal/jzy026
Shalabi, L.A., Shaaban, Z.: Normalization as a preprocessing engine for data mining and the approach of preference matrix. In: 2006 International Conference on Dependability of Computer Systems, pp. 207–214, May 2006
Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(Dec), 3371–3408 (2010)
Wojciechowski, S.: A comparison of classification strategies in rule-based classifiers. Logic J. IGPL 26(1), 29–46 (2018). http://dx.doi.org/10.1093/jigpal/jzx053
Zeng, Z., Wang, J.: Advances in Neural Network Research and Applications, 1st edn. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Jove, E., Casteleiro-Roca, JL., Quintián, H., Méndez-Pérez, JA., Calvo-Rolle, J.L. (2020). A Global Classifier Implementation for Detecting Anomalies by Using One-Class Techniques over a Laboratory Plant. In: Herrera-Viedma, E., Vale, Z., Nielsen, P., Martin Del Rey, A., Casado Vara, R. (eds) Distributed Computing and Artificial Intelligence, 16th International Conference, Special Sessions. DCAI 2019. Advances in Intelligent Systems and Computing, vol 1004. Springer, Cham. https://doi.org/10.1007/978-3-030-23946-6_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-23946-6_17
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-23945-9
Online ISBN: 978-3-030-23946-6
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)