Abstract
Methods to reduce the need for costly data annotations become increasingly important as deep learning gains popularity in medical image analysis and digital pathology. Active learning is an appealing approach that can reduce the amount of annotated data needed to train machine learning models but traditional active learning strategies do not always work well with deep learning. In patch-based machine learning systems, active learning methods typically request annotations for small individual patches which can be tedious and costly for the annotator who needs to rely on visual context for the patches. We propose an active learning framework that selects regions for annotation that are built up of several patches, which should increase annotation throughput. The framework was evaluated with several query strategies on the task of nuclei classification. Convolutional neural networks were trained on small patches, each containing a single nucleus. Traditional query strategies performed worse than random sampling. A K-centre sampling strategy showed a modest gain. Further investigation is needed in order to achieve significant performance gains using deep active learning for this task.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
BenTaieb, A., Hamarneh, G.: Topology aware fully convolutional networks for histology gland segmentation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 460–468. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_53
Cosatto, E., Miller, M., Graf, H.P., Meyer, J.S.: Grading nuclear pleomorphism on histological micrographs. In: 19th International Conference on Pattern Recognition, pp. 1–4 (2008)
Ducoffe, M., Precioso, F.: Adversarial active learning for deep networks: a margin based approach. In: Proceeding of Machine Learning Research, vol. 80 (2018)
Gal, Y., Islam, R., Ghahramani, Z.: Deep Bayesian active learning with image data. Proc. Mach. Learn. Res. 70, 1183–1192 (2017)
Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)
Prechelt, L.: Early stopping—but when? In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 53–67. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_5
Schaumberg, A.J., Rubin, M.A., Fuchs, T.J.: H&E-stained whole slide image deep learning predicts SPOP mutation state in prostate cancer. In: BioRxiv BioRxiv:064279 (2018)
Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set approach. In: International Conference on Learning Representations (2018)
Settles, B.: Active learning. Synth. Lect. Artif. Intell. Mach. Learn. 6(1), 1–114 (2012)
Sirinukunwattana, K., Raza, S.E.A., Tsang, Y.W., Snead, D.R.J., Cree, I.A., Rajpoot, N.M.: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging 35(5), 1196–1206 (2016)
Srivastava, N., Hinton, G., Krizevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to precent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)
Tizhoosh, H.R., Pantanowitz, L.: Artificial intelligence and digital pathology: challenges and opportunities. J. Pathol. Inform. 9, 38 (2018)
Wang, K., Zhang, D., Li, Y., Zhang, R., Lin, L.: Cost-effective active learning for deep image classification. IEEE Trans. Circuits Syst. Video Technol. 27(12), 2591–2600 (2017)
Yang, L., Zhang, Y., Chen, J., Zhang, S., Chen, D.Z.: Suggestive annotation: a deep active learning framework for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 399–407 (2017)
Zeiler, M.: ADADELTA: an adaptive learning rate method. arXiv preprint arXiv:1212.5701 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Carse, J., McKenna, S. (2019). Active Learning for Patch-Based Digital Pathology Using Convolutional Neural Networks to Reduce Annotation Costs. In: Reyes-Aldasoro, C., Janowczyk, A., Veta, M., Bankhead, P., Sirinukunwattana, K. (eds) Digital Pathology. ECDP 2019. Lecture Notes in Computer Science(), vol 11435. Springer, Cham. https://doi.org/10.1007/978-3-030-23937-4_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-23937-4_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-23936-7
Online ISBN: 978-3-030-23937-4
eBook Packages: Computer ScienceComputer Science (R0)